
AD-A252 876
lii II I 1111111W IDTIC

SELECTE
JUL 16 1992

Revised Final Report :

CMS-2 Reverse Engineering &

ENCORE/ SRE Integration

Contract # N00014-91-C-0240

May 1992
Revised July 1992

General Electric Company

Corporate Research and Development

P. 0. Box 8

Schenectady, NY 12301

This work was supported in part by

Naval Surface Warfare Center (NSWCDD)

under contract #N00014-91-C-0240

with the Office of Naval Research

This document has been approved
for piblic release and sale; its
disttibution is unlimited. 92- 18302

92

Table of Contents
CMS-2 Reverse Engineering and

ENCORE/SRE Integration Study
Revised Final Report

Part I CM S-2 Reverse Engineering Technology .. 1

Chapter 1.0 Technology Overview ... 1

Chapter 2.0 Automatic Operation, Installation, and Setup .. 6
2.1 Automatic Operation .. 6
2.2 RET Installation ... 8
2.3 System Setup .. 8

Chapter 3.0 Information Extraction ... 9
3.1 User Perspective .. 9
3.2 Internals ... 9

Chapter 4.0 Comment Processing .. 14
4.1 User Perspective .. 14
4.2 Internals ... 14

Chapter 5.0 System Integration ... 15
5.1 User Perspective .. 15
5.2 Internals ... 15

Chapter 6.0 Building the Teamwork/SD Reverse Engineering Database 16
6.1 User Perspective .. 16
6.2 Internals ... 16

Chapter 7.0 TeamW ork Environment .. 16
7.1 Invocation .. 16
7.2 Basic Teamwork Displays .. 16
7.3 GE-Supplied Extensions .. 17

Chapter 8.0 File Form ats .. 18
8.1 Middle Files ... 18
8.2 Comment Files ... 20

Part II ENCORE.SRE Integration Study ... 21

Appendix A: CMS RET User's Manual

Appendix B: Introduction to ENCORE Internal Representation

Appendix C: ADL Description of the Ada Internal Representation

Appendix D: Introduction to the ENCORE Symbol Table

Appendix E: SRE/ESL Internal Representation

Ww(Y)1 -'91 -C-0240 Final Report - Revised July 1992

CMS-2 Reverse Engineering and

ENCORE/SRE Integration Study

Revised Final Report

This is the final report for the contract N00014-91-C-0240. It is divided into two parts: one
addressing the CMS-2 Reverse Enqineering Technology, and the other the ENCORE/SRE
(Software Reengineering Environment) Integration Study.

Part I CMS-2 Reverse Engineering Technology

Part I presents an overview of the CMS-2 Reverse Engineering Technology (CMS RET)
produced for this contract. It includes a description of the operation of the tool, as well as
the work done, and the portions reused from other projects. Chapter 1.0 gives an overview
of the work done, Chapter 2.0 presents installation information and recommended opera-
tion instructions, Chapters 3.0 through 7.0 provide detailed discussions of the functional
areas involved, and Chapter 8.0 details the formats of two files which are crucial to anyone
customizing or extending CMS RET. Appendix A contains the User Manual for CMS RET.

Chapter 1.0 Technology Overview

The work done for this contract demonstrates that:

e Automated extraction of design information from an existing software system written
in CMS-2 can be used to document that system as-built, and that

-,The extracted information can be entered into the database of a commercially avail-
able CASE tool and manipulated via the CASE interface.

The delivered prototype operates on Sun/4 workstations and interfaces to the Cadre Team-
work/SD 2 and Cadre Teamwork/C Rev CASE tools. (If an interface to another CASE tool
should be required, the Database Generator would be reimplemented. Chapter 8.0 pro-
vides the format of this phase's input files, so such an effort would be fairly well defined.)
The delivered prototype handles a subset of the dialect of CMS-2 known as CMS-2L. This
subset is detailed in Detailed Design for CMS-2 to Ada Translation.3

1. SRE (Software Reengineering Environment) is a set of reengineering tools being constructed by Com-
puter Command and Control Company, Philadelphia, PA.
2. Teamwork/SD and Teamwork/C Rev are a registered trademarks of Cadre Technologies Inc.
3. Detailed Design for CMS-2 to Ada Translation, January 1992, GE internal document.

N0O014-91 -C-0240 Final Report - Revised July 1992 1

The key features of the CMS RET system are:

9 The interactive visual interface to the extracted information is provided by a commer-
cially available CASE tool.

*Information describing software system design is automatically extracted from source
files and organized in a language independent standard mode.

-A method has been developed which exploits project-specific commenting conven-
tions in order to automatically extract comments to the database.

There are three major vehicles of communication provided by the Teamwork/SD interface:

-Structure charts illustrate the calling relationships between modules. (see Figure 1)

" Module specifications (Mspecs) present a description of each module. (see Figure 2)

" Data dictionary entries (DDEs) describe the global variables. (see Figure 3)

In addition the system will answer the following questions:

-Where is this variable referenced?

*Which modules call this one?

F116 WI..eSC JiM bi . AUi . Print &PI b Gm WIT NIE2

FIGURE 1. Structure Chart generated by CMS RET, displayed by Teamwork/SD

The Structure Chart displays the calling relationships between the modules of the system,
providing a convenient method of traversing the software under examination. It provides
direct access to the Mspecs of the modules displayed, as well a facility for looking up the
call tree of any module displayed.

N00014-91 -C-0240 Final Report - Revised July 1992 2

File imui N-Se Avwtstat Pint WT COW
TITLE: NSPISUC

LOCAS:

TVPES deaS.

0ITIM : aSS.hue

0224STOPmma

calls

NSNEOF

AAAVAr tFile Text.
extPac ad aneentoS

3.1.2 SEARCHl NAACSEAET SUCCESSOR PROCID(PRE (MSMSUCI
THE HSASUC PAS0CEDURE IS ACTIVATED BY ATES TO SCHEMEL ASS
AS I TS SUCCESSOR ENTANCE FOR THE KEAN REQUESTS.

FIGURE 2. Mspec generated by CMS RET, displayed by Teamwork/SD)

The Mspec describes the important aspects of a module: its parameters, the names of any
global variables which it references, and comments extracted from its source code. It also
summarizes the structure chart information which is pertinent to the module being dis-
played, and provides direct access to the relevant source code. From the Mspec for a given
module, the user can easily move to the Mspecs of related modules and the DDE's for any
relevant global variables.

Cinia PINEEMPTIA In u to i S SSTU
File UMoE~ AnetattS PrintS MET 01F File I.S-ODE ftAitmt Pint MT CNIRE
NArtrbts: (ate IN., Bell attflA.S: IRIN PFes

-------- AS TSUC * PEPT s SCRIED # PRIORITY . ENTANCE

TYPE :1 4 V . =10O SHEGAOD . TYPPE-e
CAVPSSI 34MAI./sAVce.CAS chew: SA0b
FILE :SAAL/Asam.cas tit".: Sib

:hetwntAI table. I-dS.A"wioeai
TYPE
CIOiPSO. :SRAiA./seuce cA. <(TineA: 45,
FILE :SAI /AA... <ieM: 495,

FIGURE 3. Two examples of DDEs produced by CMS RET, displayed by Teamwork/SD

The DDE describes a global data item, displaying its structure and type, as well as the
location of its declaration (displayed with and without reference to any include files). If
the item in question is a table, its DDE gives the user immediate access to its fields' DDEs.
In addition, the DDE provides direct access to the relevant source code, and permits the
user to display a list of modules which access the data item in question.

The objective of the CMS-2 Reverse Engineering Technology is to provide the information
for the displays in Figures 1, 2, and 3. To achieve this, GE built upon two past projects: a

N000 14-91 -C-0240 Final Report - Revised Juy 1992 3

CMS-2 to Ada translator (CMS2Ada) [1] and a Jovial Reverse Engineering Technology
(JRET) [2]. CMS2Ada provided CMS-2 language capabilities which could be reused, and
JRET provided a framework for a general reverse engineering technology which could be
adapted to fit CMS-2.

The CMS-2 Reverse Engineering Technology is made up of four functional areas:
1) Information Extraction, 2) Comment Processing, 3) Database Generation, and the 4)
Cadre Teamwork interface. The first two functions (Information Extraction and Comment
Processing) operate on a file-by-file basis, collecting relevant information into a language-
independent format. Database Generation builds a system-wide view of the information,
writing it into a form which Teamwork can process. The final functional area is Cadre
Teamwork/SD. These four functions work together to visually present as-built architec-
tural information about an existing system. Figure 4 shows how these areas fit together.

The bulk of the work for this contract was done on the first two functional areas: Informa-
tion Extraction and Comment Processing. The Database Generator was reused from JRET
and Teamwork/SD is a commercial product from Cadre, which was extended using their
extensible interface 1 . (These extensions were also reused from JRET.)

Accesion For

NTIS CRI,&I

DTIC TAB

Justif i;."t k. -

By .. .

U~t -

L.

Statement A per telecon James Smith
ONR/Code 1267
Arlington, VA 22217-5000

NN 7/15/92

1. See Teamwork User Menus User's Guide, Chapters 2 and 3 for a detailed description of this facility.

N00014-91-C-0240 Final Report -Revised July 1992 4

Sore)ie

iCMS-2

(1) Informatio3Extrctor

1(2) Comment Processor

()Databaseerao

FIGURE 4. System Overview of CMS RET

N0001 4-91-C-0240 Final Repcwt - Revise July 1992 5

Chapter 2.0 Automatic Operation, Installation, and Setup

2.1 Automatic Operation

CMS RET is run as a series of steps. These steps are usually run across all Computer Soft-
ware Configuration Items I (CSCIs) in a CMS-2 system when the initial build of the Team-
work database is done. (See Section 2.3 for further details about CSCIs.) Over time, as files
change, there may be a need to rebuild the database. If only a small number of CSCIs have
been affected, it may be preferable to run rebuild only on the part of the database dealing
with the affected CSCI's.

The $RETDB.HOME/admin/build-ret script will run all the steps, either for one CSCI or
for the whole CMS-2 system. It takes care of all the details and housekeeping involved,
and produces log files so that the user can monitor its progress. It is invoked as follows:

$RETDBHOME/admin/build-ret [n [CSCInamel]

n - is an integer between I and 7 specifying which operation is to be performed. If it is not
entered on the command-line, build-ret prompts for an input. The choices are as follows:

I CMS Rev pass 3 (information extraction)
2 CMS Rev Comment Processing
3 CMS Rev pass 4 (system integration, part 1)
4 Post-Process CMS Rev (system integration, part 2)
5 Create TeamWork Database
6 Dump TeamWork Database
7 Restore TeamWork Database

CSCI_name- indicates the CSCI on which the specified operation should be performed. If
omitted, the processing will affect all CSCI's, as determined by the contents of $RETDB_-
HOME/src/search.paths.

In normal operation, one would call the script with option 1, then 2, and so on, until option
5 had been performed. A CSCI name is not generally specified unless a particular CSCI is
being rebuilt separately for some reason.

Here is the sequence of commands and system responses which would be issued to build a
full CMS-2 system which contains the CSCIs COLLECT and ANALYZE:

> $RETDBHOME/admin/build-ret 1
Begin RET Build Program, Tue Apr 21 10:01:36 EDT 1992
ANALYZE CMS Rev Pass 3 Tue Apr 21 10:01:39 EDT 1992
COLLECT CMS Rev Pass3 Tue Apr 21 10:01:54 EDT 1992
End RET Build Program, Tue Apr 21 10:02:14 EDT 1992
> $RET DBHOME/admin/build-ret 2
Begin RET Build Program, Tue Apr 21 10:02:28 EDT 1992

1. See DOD-STD-2167A, June 4, 1985, for definitions relevant to Computer Software Organization.

N00014-91-C-0240 Final Report - Revised July 1992 6

ANALYZE CMS Rev Comment Processing Tue Apr 21 10:02:31 EDT 1992
COLLECT CMS Rev Comment Processing Tue Apr 21 10:02:42 EDT 1992
End RET Build Program, Tue Apr 21 10:02:50 EDT 1992
> $RETDBHOME/admin/build-ret 3
Begin RET Build Program, Tue Apr 21 10:03:03 EDT 1992
ANALYZE CMS Rev Pass 4a Tue Apr 21 10:03:05 EDT 1992
COLLECT CMS Rev Pass 4a Tue Apr 21 10:03:08 EDT 1992

CMS Rev Pass 4b Tue Apr 21 10:03:12 EDT 1992
ANALYZE CMS Rev Pass 4c Tue Apr 21 10:03:15 EDT 1992
COLLECT CMS Rev Pass 4c Tue Apr 21 10:03:23 EDT 1992
End RET Build Program, Tue Apr 21 10:03:33 EDT 1992
> $RETDB_HOME/adminlbuild-ret 4
Begin RET Build Program, Tue Apr 21 10:03:49 EDT 1992
ANALYZE CMS Rev Post-Processing Tue Apr 21 10:03:51 EDT 1992
COLLECT CMS Rev Post-Processing Tue Apr 21 10:03:55 EDT 1992
End RET Build Program, Tue Apr 21 10:03:59 EDT 1992
> $RETDB_HOME/admin/build-ret 5
Begin RET Build Program, Tue Apr 21 10:04:16 EDT 1992

*** Starting crev and twk-put *** Tue Apr 21 10:04:18 EDT 1992
yes to proceed, CTRL/C to abort: yes
crev and twk-put pass for ANALYZE Tue Apr 21 10:04:21 EDT 1992
crev and twk-put pass for COLLECT Tue Apr 21 10:06:12 EDT 1992

*** Completed crev and twk-put *** Tue Apr 21 10:10:46 EDT 1992
End RET Build Program, Tue Apr 21 10:10:47 EDT 1992

If the system had been built once already but changes had occurred only in ANALYZE, the
user could rebuild only that CSCI by issuing the same set of commands, but with ANA-
LYZE appended to each.

Options 6 and 7 are not a normal part of building the system. They are useful for backups
and for transporting the database between systems. They simply invoke the appropriate
Cadre utilities. When option 6 is invoked without a CSCI name, the dump is placed into
$RET_DBHOME/dump/twk-dump. If a CSCI name is specified, then the dump goes into
$RETDBHOME/dump/csci name.twk-dump. When option 7 is chosen, it loads the files
from the dump files written in option 6.

Build-ret also produces log files. These are found in the directory $RET_DB_HOME/log.
Here is a list of the log files and where they are produced:

passl csci-name.p3-log
pass3 csciname.p4a-log, p4b-log, csci-name.p4c-log
pass5 csciname.twk-log
pass6 twk-dump-log (if invoked without CSCI name)

csci-name.twk-dump-log (if invoked with CSCI name)
pass7 'wk-load-log (if invoked without CSCI name)

csci-name.twk-load-log (if invoked with CSCI name)

N00014-91-C-0240 Final Report - Revised July 1992 7

2.2 RET Installation

Once the distribution tape is received, the contents should be extracted using tar (a Unix
utility). This will create a directory named ret, with several subdirectories. All RET users
will need to create an environment variable, $RETDBHOME, which contains the path
name of this ret directory.

There are several files in the directory $RETDBHOME/sys which must be customized. In
the files listed below, the string "$RETDB_HOME" must be replaced with the hard-coded
path name of your installation's ret directory (e.g. /common/sun4/ret). The affected files
are:

dd.menu (1 substitution)
dde.menu (1 substitution)
desktop.menu (1 substitution)
dpi.menu (1 substitution)
file.menu (1 substitution)
ms.menu (1 substitution)
pi.menu (2 substitutions)
sc.menu (4 substitutions)
config-file (10 substitutions)

The only other requirements are that the Cadre Teamwork and Crev products must be
installed. Please refer to the Cadre documentation [41 for this procedure.

2.3 System Setup

Once RET has been installed, the user must load into it the source system to be examined.
There are two steps involved with this:

1. in $RET_DBHOME/src, update the file search.paths to contain only the names of the
CSCI's which are part of the system to be examined.

2. in $RET_DB...HOME/src, create a soft UNIX link to each CSCI entered in s:!arch.paths.
(Each CSCI should now have a atrectory

3. filled with the source files associated with it.)

It should be noted that CMS RET views a CMS-2 system as a set of CSCIs. Each CSCI is a
subdirectory of the overall system directory, containing source files which are presumably
related. Even if there is only one source directory for a project, it should appear as a subdi-
rectory of the project itself, and be considered a CSCI. It is generally advisable for the CSCIs'
names to be all capital letters.

N00014-91 -C-0240 Final Report - Revised July 1992 S

Chapter 3.0 Information Extraction

3.1 User Perspective

The user will run this pass on every complete source file in the CMS-2 system. (Include
files are brought in automatically by the files which reference them.) This can be done
using the build-ret script described in Section 2.1, or by issuing the command:

cnms2cdif.p3 -csci csci_name (file-names I

so that each source file in every CSCI is processed. file-name is a non-empty list of the
files to be processed and CSCI name is the name of the CSCI containing these files. (csci_-
name must not contain wild cards, but file_name may.) The command must be issued
within the appropriate CSCI. For each file processed, there will result a middle file and a
comment file, which are used in the later steps. The formats of the middle and comment
files are given in Chapter 8.0.

3.2 Internals

The Information Extractor is written in Ada, and has two basic parts (the parser and the
extractor), both of which interface to our internal representation of the CMS-2 language.
The parser and internal representation were completely reused from the CMS2Ada trans-
lator, with a few extensions to expand our language coverage. (These are detailed in the
description of the parsing package in 3.2.2.) Parts of the extraction mechanism were
adapted from JRET (the Jovial Reverse Engineering Technology), but much of it was
rewritten because of the differences between the internal representations of CMS-2 and
Jovial. The new version was written with liberal use of generics and non-language specific
data structures, with the hope that most of it will be reusable should we ever want to
reverse engineer another language.

The remainder of this section contains a brief description of the packages in the Informa-
tion Extractor, the relationships between them, and a more detailed look at some of the
more important packages.

3.2.1 The packages comprising the Information Extractor

In the list that follows, * indicates almost complete reuse, # indicates significant reuse, and
italics indicate that the package is generic.

o Main * (contains main driver, handling command-line interface and file control)

* CMSRecords * (description of the nodes which make up the internal representation)

* CMSInterface * (access routines for CMSRecords)

* CMSUtils (some general utilities not available in CMS_Interface)

-Parse * (creates a parse tree, made up of structures from CMSRecords)

e Lexical Analysis *

N00014-91-C-0240 Final Report - Revised July 1992 9

*Symbol tables and symbol table management * (several related packages)

*Parse -ontrol * (helper package for parser and classification routines)

*Extract_'afo # (high-level node-processing routines; basically sorts out the nodes)

'DataProcessing # (mid- and low-level routines specific to data declarations)

•ExecutableProcessing # (mid- and low-level routines specific to executable state-
ments)

*OptionProcessing (mid- and low-level routines specific to option statements)

" StructureProcessing (mid- and low-level routines specific to structure statements)

' Subprogram-Processing # (mid- and low-level routines specific to subprogram decla-
rations)

' PrintMiddle # (language-independent printing routines; mainly utilities)

'Source Jile_database * (associates nodes with file names and line numbers)

• Scoping# (determines which data items are global and which are local)

' SubprogramLists # (data package for communication between SubprogramPro-
cessing and ExecutableProcessing)

" System-Info (data package indicating what options are currently in effect and what
structure is being processed)

" Debug-Flags * (framework for dubugging)

" CommentHandler # (received comments and context indications from the parser and
prints to the comment file as appropriate)

" Comment-Helper (Language specific utilities unique to comment handling)

Figure 5 shows the with'ing relationships between these packages.

N00014-91-C-0240 Final Report- Revised July 1992 10

honrsforontrol

OE t I = eltivllnua-ineedn DataJ =- lauae-dpedn

FIUR adi.on With'in thpck g Reltih ip e Pakae

pa04-1cages Foin ghitenal represReenetJlya99

3.2.2 Details of Important Packages

Parsing and Representation Packages: These include CMS_Records, CMSInterface,
and the parser, lexical analyzer, and symbol-table packages. As a baseline, we reused these
packages from the CMS2Ada translator, but extended them as part of this contract to
address certain CMS-2 constructs which were not previously handled. These include
macro expansions (via the means and exchange statements), user-defined type declara-
tions, and the terminate phrase. In addition, a means for processing cswitch directives was
designed, but not implemented.

ParseControl: is a generic package containing a pointer to the top node of the parse tree
and the routine which calls the (instantiated) parser and extractor.

Extract_Info: contains the top-level extraction routine, and those generalized routines
which classify each node and drive the processing. The top-level extraction routine also
takes care of the file control for the middle file being created.

Visible Routines:
Process_ ANode
ProcessSeqOfNodes
IsReceptacle
Process_- Receptacle
ProcessSeqOfLReceptacles
Is-Expression
Process-Expression
ProcessSeqOfExpressions
Extract

DataProcessing: contains routines to classify and process the nodes which represent data
declarations. The processing includes checking the declaration for usages of other data
items, and printing appropriate information to the middle file.

Visible Routines:
Is_DataDecl
ProcessDataDecl

ExecutableProcessing: contains routines to classify and process the nodes which repre-
sent executable statements. The processing includes checking for data uses and subroutinecalls, and keeping track of any which are found.

Visible Routines:
IsExecutableNode
ProcessExecutableNode

OptionProcessing: contains routines to classify and process the nodes which represent
option statements. The processing generally entails setting global variables to reflect the
options found.

Visible Routines:
Is.Option_Node

N00014-91-C-0240 Final Repon - Revised July 1992 12

Process._OptionNode

StructureProcessing: contains routines to classify and process the nodes which represent
structural statements. This processing generally consists of making sure all statements
within the structure are processed.

Visible Routines:
IsStructureNode
ProcessStructureNode

Subprogram-Processing: contains routines to classify and process the nodes which repre-
sent subprogram declarations. This processing includes setting up a framework in which
to collect information about the subprogram's activities, making sure all statements within
the subprogram are processed, and writing the information collected to the current middle
file.

Visible Routines:
IsSubprogramDecl
ProcessS ubprogramDecl

Print_Middle: is a generic package which contains a file pointer to the middle file, and
routines to handle much of the printing for it. The idea behind this package is that the for-
mat of the middle file is language-independent, even though the internal representation of
the information is not. Therefore, the routines in print-middle use language-specific
instantiated "helper" routines in order to access any extra information needed, and then
print everything out in a standard format.

Visible Routines:
NewMiddleFile
GetMiddleFile
CloseMiddleFile
Comma-Space
PrintComponentDecl
PrintExtendedName
Print_Formals
PrintSimpleDecl
Print_Start_of_Composite_Decl
PrintSourceInfo
PrintTWAttribute

SubprogramLists: is a generic package which contains the infrastructure which the sub-
program-processing routines use to keep track of the reference information collected. It
serves as the prime communication mechanism between the Subprogram-Processing and
Executable_Processing packages.

Visible Routines:
AddToCalls
PrintCalls
AddToReads
PrintReads

N00014-91 -C-0240 Final Report - Revised July 1992 13

AddToWrites
PrintWrites
Print_Reads_AndWrites
InitializeSubprogramLists
UpdateReadsAnd_Writes
PushLocals
Pop_-Locals
Add_To_Locals
AddTo_Params
MernLocals
MemParams

Chapter 4.0 Comment Processing

4.1 User Perspective

The user will run this pass on every .comment file produced as a result of the Information
Extraction. This can be done using the build-ret script described in Section 2.1, or by issu-
ing the command

gawk -f $RET_DBHOME/cnsrev/bin/coments.awk *.comments

(see Section 2.2 for the proper setting of the $RETDBHOME environment variable).
(gawk is gnu awk. If your installation does not own a copy, use the one in $RET_DB_-
HOME/cmsrev/bin.) Since this capability must be sensitive to the commenting conven-
tions of the current project, it is recommended that the user customize the comments.awk
program to reflect the prevailing conventions. Those planning to do this customization
would be well-advised to read Section 8.2, which describes the format of the .cornment
files.

4.2 Internals

The .comment files written by the Information Extractor contain a line for each comment
found, and one for each "interesting" construct encountered in the source code. Interesting
constructs include data declarations, subprogram declarations, header blocks, proc and dd
statements. Thus the files contain not only the comments, but some context condensed out
of the source code. A distinction is made between COMMENT ... $ constructs and in-line
comments, resulting in even more context information.

The purpose of the comments.awk program is to create an .ext com file for each subpro-
gram declaration found in a .comment file. This .ext-corn file contains exactly the text
that will eventually appear in the Mspec for that subprogram in the Cadre database. The
standard comments.awk program, included with this release, selects as relevant the com-
ments which fall between the subprogram's declaration and its actual code.

NO014-91 -C-0240 Final Report -Revised July 1992 14

Chapter 5.0 System Integration

5.1 User Perspective

There are several passes involved in this activity. They can be run via the build-ret script
described in Section 2.1, or by issuing the following commands:

(in each CSCI directory)
cms2cdif.p4a -csci csci_name *.middle
(in parent directory)

cat *.decls I sort I awk -f $RETDBHOME/admin/p4b.awk
cms2cdif.p4b -P search.paths *.export
(in each CSCI directory)
cms2cdif.p4c -csci csciname -crev -mspec -dde *.middle
$RETDBHOME/admin/do post csciname

(See Section 2.2 for a description of the $RETDBHOME environment variable.) If the
passes are run outside of the build-ret script, there is a set of files which must exist before
running them. In each CSCI, limits.txt must be present. This should be copied from
$RET_DB_HOME/admin, or it can be made an empty file, in which case no DDE's will be
produced. In the CSCI's parent directory, search.paths must exist. It will contain the
names of the CSCI's which are to be active (this would typically be all of the subdirecto-
ries).

The output of these steps is the set of files twk.script, ret.crev, ret.ctl, ret.dd and ret.ms.
These are used in building the Teamwork/SD reverse engineering database.

5.2 Internals

The purpose of these steps is to reconcile any name clashes which may occur, either
within or between CSCI's, to resolve inter-CSCI references, and to build the CDIF 1 repre-
sentation of each CSCI's information. Briefly, the processing responsibilities are divided as
follows: cms2cdif.p4a compiles two lists for each CSCI, one for data item names and one
for subprogram names. p4b.awk and cms2cdif.p4b create new names where necessary to
avoid name clashes. cms2cdif.p4c creates the CDIF files which will be fed into the Team-
work database, and a script for loading them. do-post edits a few files so that the Team-
work extensions will read them correctly.

1. CASE Data Interchange Format

N00014-91 -C-0240 Final Repon - Revised July 1992 15

Chapter 6.0 Building the Teamwork/SD Reverse Engineering
Database

6.1 User Perspective

The CSCI's for the databases being constructed must exist in Teamwork. If they do not,
then start Teamwork and create new models with these CSCIs' names. Once the models
exist, construct their respective databases either by using the build-ret script described in
Section 2.1, or by issuing the following command in each CSCI:

/bin/sh twkscript

6.2 Internals

This step invokes crev and twk put to build the database. crev uses ret.crev and ret.ctl to
produce the Teamwork structure charts, and twk_put creates Mspecs from ret.ms, and
DDEs from ret.dd.

Chapter 7.0 TeamWork Environment

7.1 Invocation

In order to use the extensions GE-supplied extensions, Teamwork must be invoked using
the RET config.file. This config-file must be customized during installation, as described
in Section 2.2. Once that is done, invoke Teamwork as follows:

teamwork -c $RET_DB_HOME/sys/configfile

(See Section 2.2 for the proper setting of the $RET_DBHOME environment variable.)

7.2 Basic Teamwork Displays

Most of the Teamwork displays are standard to the Teamwork environment, and are
explained in the Cadre documentation. The Mspec and DDE displays are somewhat cus-
tomized for RET, so they are described here.

The Mspec (Module Specification) display is intended to describe the important aspects of
a module. In this context, a module corresponds to a subprogram. The information con-
tained is the following: subprogram parameter names and directions; global variables
accessed, along with an indication of whether they are read or written; modules called;
calling modules; and comments extracted from the source code of the module.

The DDE (Data Dictionary Entry) display is intended to convey the important features of a
data item. The information supplied for a simple variable includes: type information;
actual location (file and line number) of its declaration; and location of its declaration, tak-
ing into account include expansions. For arrays, the number of dimensions, direction, and
any field names are also included.

N00014-91-C-0240 Final Report - Revised July 1992 16

7.3 GE-Supplied Extensions

The user should consult the Cadre documentation for information on the standard Team-
work environment [3]. What follows here is a description of the GE-supplied extensions to
that environment, and guidelines for how to use them.

Displaying Source Files: There are times when the summarized information is not suffi-
cient for the task at hand. In these cases, it is useful to have a quick method of viewing the
actual source code. In order to do this, select a module of interest from a structure chart or
Mspec, or a data item from a DDE, and choose the RET menu item "Display Module
Source". The corresponding source file will be displayed, and the user can then search on
the name of the module or data item in order to find the desired declaration.

Displaying Data Usages: It is often important to know which modules use a particular
global variable. This information is available from the full Data Dictionary as well as the
Mspec display. To view it, simply select the desired global variable, and choose either
"Display Where Ref" or "Display Where Ref All" from the RET menu (the latter extends
the search across all active CSCIs). The information will be retrieved and displayed in a
window which lists the modules in which that data item is referenced. From that window,
the user may move to the Mspec for any of the referencing modules by selecting its entry
and choosing the RET menu item "Show Module Spec".

Displaying Calling Modules: Although the structure charts are effective in showing the
called modules of a particular subprogram, it can be tedious working backwards to find the
calling modules. There are two ways to find this information easily. The first method is to
view the Mspec of the desired module and find the list of calling modules. The second
method is to select the desired module from a structure chart and choose the RET menu
item "Display Calling Modules". The information will be retrieved and displayed in a
window which lists the modules which call the selected one. From that window, the user
may access the Mspec for any calling module by selecting its entry and choosing the RET
menu item "Show Module Spec". (From there, "Show SC" from the WholeMspec menu
will bring up the corresponding structure chart.)

Displaying Mspecs from Structure Charts: When viewing a structure chart, select the
desired module and choose the RET menu item "Open Module Spec". The corresponding
Mspec will appear.

Displaying DDE'sfor the Fields of a Table: When viewing the DDE of a table or array, it is
not enough to see just that item's information; the component items' entries are equally
important. These can be viewed easily by highlighting the desired name within the table's
DDE and then choosing the RET menu item "Open DDE". A new DDE window will open
with the desired entry.

For a more in-depth description of the GE-enhanced Teamwork environment, please see
the.CMS RET User's Manual found in Appendix A.

N00014-91 -C-0240 Final Report - Revised July 1992 17

Chapter 8.0 File Formats

8.1 Middle Files

The middle files hold the information which is extracted from the CMS-2 source files,
before it is integrated into a system view. In the case that this technology were ported to a
CASE tool other than Cadre, these files would be the starting place for the re-implementa-
tion.The following is the grammar for the middle files.

file::= "file" stringliteral ["csci" identifier] (declaration)
declaration ::= context-decl external_decl I subroutine_decl I objectdecl I

groupdecl I typedecl

context-decl "context" identifier [idjlist I [source-info]

contextlist ::= context-decl)

external_decl ::= "external" globaldeclaration

globaldeclaration ::= subroutinedecl I objectdecl I type-decl

subroutinedecl proceduredecl I functiondecl

procedure-decl "procedure" identifier [source_infol
subroutine_info "end"

function_decl ::= "function" identifier (source-info] type-info
subroutineinfo "end"

subroutineinfo ::= ["long" "name" string-literal I
[formaljlist] [local-list] [context-list I [calls-list I [readslist]
[writes-list] [reads writeslist] [nested_subslist I
["header" "file" stringjliteral I ["copy" "files" string literal]
I pseudocode_list

object-decl simple_decl I composite-decl

simplejdecl = "simple" identifier ["constant"] (sourceinfo I
["csci" identifier] tw-attr type_info ["members" list I

composite-decl ::= "composite" identifier ["constant" I composite-class
[sourcejinfo I ["csci" identifier] [indexinfo] tw-attr
(component-list I type-info)

indexinfo ::= "indexed" "(" integerjiteral ")"

N00014-91-C.0240 Final Report - Revised July 1992 18

twattr [twprim I twflow

tw prim::= "PEL" I "CEL" I "DEL"

twflow ::= "controlflow" I "dataflow" I "bothflow" I "store"

group-decl ::= "group" identifier [source-info] ["csci" identifier]
(declaration) "end"

formallist ::= "formals ". (" formal t ",' formal))9

formal ::= identifier direction type-info

local_list ::= "locals" id-list

a-call ::= identifier ["nested"] [actual-list]

actuallist ::= "(" actual ("," actual) ")"

actual ::= ("(" object decl ")") I identifier

direction ::= ("in" ["out"]) I "out"

type._decl ::= "type" (simple-type-decl I compositejtype decl)

simple-typedecl ::= "simple" identifier [sourceinfo] ["csci" identifier]
tw attr type-info ["members" list]

composite.type-decl ::= "composite" identifier compositeclass
[sourcejinfo] ["csci" identifier] [indexinfo] twattr
(componentlist I type-info ["members" list])

component-list ::= "(" [(simpledecl I composite -decl)

("," (simpledecl I compositedecl) }] ")"

compositesclass ::= string-literal

type _info ::= string-literal

calls-list::= "calls" "(" a-call ("," a-call } ")"

reads_list::= "reads" id_list

writes-list ::= "writes" id-list

reads_writes-list ::= "readswrites" id-list

N00014-91-C-0240 Final Repon - Revised July 1992 19

nestedsubs_list ::= "nested" [subroutinedecl }

pseudo_code_list ::= "pseudo_code" list

list ::= "(" string-literal ("," string-literal "

idlist ::= "(" identifier ("," identifier) ")"

source_info ::= integer_literal string-literal [integerjiteral string-literal]

identifier::= string-literal I reservedword of language

8.2 Comment Files

The comment files contain both the CMS-2 comments and some condensed context infor-
mation. These are the files which are input to the comment processor, which then produces
one .extcom file for each subprogram, containing any relevant comments. The awk script
of the comment processor is user-customizable.

file ::= (entry)

entry ::= comment-entry I context-entry

comment-entry ::= samelineentry I stand-alone-entry

samelineentry ::= "SAME LINE: "string

standaloneentry ::= "COMMENT:" string

context_entry ::= datadecl I subprogram-decl I structural_entry I
"CODE" I "UNKNOWN CODE"

datadecl ::= "DATA" I "EQUALS" I "FIELD" I "LOADVRBL" I
"NITEMS" I "PARAMETER" I "SYS-INDEX" I "TABLE" I
"VARIABLE"

subprogram-decl ::= "EXEC-PROC" identifier I
"FUNCTION" identifier I
"PROCEDURE" identifier I
"END"

structuralentry ::= "AUTO-DD" I "END-LOC-DD" I
"END-MAJOR-HEADER" I "END-SYS-DD" I "END-SYS-PROC'1
"END-SYSTEM" I "LOC-DD" I "MAJOR-HEADER" I

"MINOR-DD" I "PROGRAM-BODY" I "SUBPROGRAM-DD" I
"SYS-DD" I "SYS-PROC" I "SYSTEM"

N00014-91-C-.O24 Final Report -Revised July 1992 20

Part II ENCORE-SRE Integration Study

Task III of this project sought to study the feasibility of integrating GE's ENCORE system
with Computer Command and Control Corporation's (CCCC) Software Re-Engineering Envi-
ronment (SRE). (The original title of this contract refers to MODEL which was developed
at CCCC as part of their reengineering efforts, but the reengineering environment to which
this study refers is SRE.'he initial phase of the study compared the functionality of the
two systems to determine whether it makes sense to integrate them. This was followed
with the design of a method for integrating the two systems. As a result of our study, we
have concluded that the two systems could functionally complement each other and that
there are no insurmountable technical barriers blocking the integration. The issues
involved with integrating the two systems are discussed in the following paragraphs.

The ENCORE system promotes reuse of heritage code via automatic translation and
reengineering. Components of the ENCORE system include translators from FORTRAN to
Ada and CMS-2 to Ada, control and data restructuring, basic metric capabilities, limited
dataflow analysis, and the ability to parse and regenerate Ada programs. The restructuring
components (control and data) provide an automated mechanism for understanding and
improving the fine grained aspects of a software system. The SRE system provides an
environment for viewing and modifying the coarse grained architectural features of an
existing software system. Combining ENCORE and SRE would produce an environment
for reengineering both at the fine grained and coarse grained levels.

Combining the two systems would require that they share the information about the code
being reengineered. Currently both systems operate on their own distinctive internal repre-
sentation of Ada code. (The ENCORE internal representation is called the IRep and the
SRE internal representation is called the ESL.) Since the implementations of the two repre-
sentations are vastly different and a great deal of reengineering functionality has already
been developed specific to each implementation, we recommend a loose coupling of the
two systems via translation between the two internal representations. Though the imple-
mentations of the two internal representations are vastly different, they both embody the
same information and the mapping from one internal form to the other appears to be
straightforward. (The IREP is described in Appendices B, C, and D, while the ESL is pre-
sented in Appendix E.)

This approach avoids the reimplementation of reengineering capabilities just for a differ-
ent internal representation and it allows the two companies to further develop their prod-
ucts without having to tightly coordinate changes.

The only stumbling point in this integration scheme is a platform problem. The ENCORE
system runs on a UNIX platform and currently uses the SunView2windowing system. The
SRE system is tightly coupled with the DECdesign 3 system and therefore must run on a

1. UNIX is a registered trademark of AT&T Bell Laboratories
2. SunView is a trademark of SUN Microsystems, Inc.
3. DECdesign is a trademark of Digital Equipment Corporation

N00014-91-C-0240 Final Report - Revised July 1992 21

VMS platform. This problem can be overcome by either moving one system to the other
platform, or creating a mechanism for passing the information between the internal repre-
sentations (and therefore between machines) via ASCII files.

If the ENCORE user interface were rewritten in X, then ENCORE could run on the VMS
platform. To move SRE to a UNIX platform, CCCC would have to either get an implemen-
tation of DECdesign for UNIX or replace the use of DECdesign in SRE with some other
database and visualization system. Either option involving SRE is estimated to require
more effort than moving ENCORE to VMS. We advocate changing the ENCORE user inter-
face to X, if integrated performance on a single platform is required.

The alternative to changing platforms is to provide a mechanism for passing the informa-
tion between the two reengineering systems via ASCII files. To use the systems in an inte-
grated manner, one would follow the following sequence of steps: 1) a collection of Ada
source code would be reengineered using one of the systems; 2) ASCII files capturing the
all the necessary information would be generated and passed to the other system; 3) the
other system would be used to further reengineer the Ada. (The passing of the ASCII files
would be bi-directional.) When the reengineering is finished, new Ada code would be
regenerated capturing the reengineering modifications made by both systems. With this
scenario, the ASCII files would have to completely capture all the information in the inter-
nal representations and both systems would have to be able to parse and print these ASCII
files.

Since the internal representations for the two systems currently contain the exact same
information as is contained in an Ada program, we have the option of choosing either an
abstraction of one of the internal forms or restructured Ada code for the format of the
ASCII files. A shortfall of the latter option is that it precludes future expansion of the inter-
nal representations. We e,.pect that in the future we will want to expand SRE and ENCORE
to be able share computed information about the Ada code. Using Ada code as the means
of communication between the two systems would prohibit this expansion. Therefore we
recommend choosing an abstraction of one of the internal forms.

The ENCORE system currently has a prototype version of an ASCII file parser and printer
which consumes and produces an abstraction of the IRep. We call this software our IRep
Inputter/Outputter. As mentioned above, this software is only in prototype form at this
time, but with minimal effort it can be extended to handle the complete ENCORE IRep.
The software is written in Ada and can easily be integrated into both SRE (under VMS)
and ENCORE (under UNIX).

In summary, we are suggesting translation between the SRE ESL and ENCORE IRep as the
best way to integrate the two systems. To accomplish this an ESL -* IRep translator must
be built and either ENCORE will have to be moved to the VMS platform, or the IRep Input-
ter/Outputter will have to be made more robust and incorporated into both SRE and
ENCORE. The following pages provide an outline and estimates of the tasks involved with
each option.

N00014-91-C-0240 Final Report - Revised July 1992 22

Figure 6 illustrates the envisioned system architecture for a merged ENCORE-SRE system
where ENCORE has been moved to the VMS platform.

SRE/.EN O.R E...........................

.. o t o

ESL le

DECdesign

.lL

reengineering
modules

VMS Platform

FIGURE 6. ENCORE - SRE Integration on a Common VMS Platform

To realize the integration shown in Figure 6, the following tasks must be completed:

* Software must be written to translate back and forth between ESL and IRep. (about 9
person months to complete)

*The ENCORE user interface must be rewritten in X. (about 9 person months)

*The ENCORE and SRE user interfaces must be updated to allow the user to switch
between the two systems (automatically transferring from one internal representa-
tion to the other). (about I person months - 1/2 person month for each system)

We believe a sound estimate for this form of integration is 20 person months.

N00014-91-C-0240 Final Repon- Revised July 1992 23

Figure 7 shows how to integrate the two systems via ASCII IRep files.

...................SRE............ ENCD.RE

ESL IRep Ie

DECdesign

S........... Control

reengineering

IRep moue

VMS Platform Code

Sun workstation

FIGURE 7. ENCORE - SRE Integration via ASCII IRep Files b

To implement the above integration the following must be done:

* Software must be written to translate back and forth between ESL and IRep. (about 9
person months to complete) (This is the same as the first bullet with the previous
integration option.)

*The IRep Inputter/Outputter must be made more robust. (about 3 person months to
complete)

*The IRep Inputter/Outputter must be incorporated into the SRE system. the file load-
ing process must be updated to load IRep files using the Inputter and translate the
IRep structure to an ESL structure, and the file writing process must be updated to
translate the ESL structure to the IRep structure and generate the ASCII IRep files
using the Outputter. (about 2 person months to compete)

*The ENCORE file load and file write must be updated to use the IRep Inputter/Output-
ter. (about I month to complete)

We estimate it will take 16 person months to achieve this form of integration.

N00014-91-C-0240 Final Repo - Revised July 1992 24

References

[1] CMS2Ada - a CMS-2 to Ada translator developed at GE Corporate Research and
Development. For information contact J. Sturman at GE Corporate Research and Devel-
opment, P.O. Box 8, Schenectady, N. Y. 12301 (518) 387-5457

[2] JRET - Jovial Reverse Engineering Technology developed at GE Corporate Research
and Development. For information contact J. Sturman at GE Corporate Research and
Development, P.O. Box 8, Schenectady, N. Y. 12301 (518) 387-5457

[31 Teamwork/SD User's Guide, Release 4.0, Cadre Technologies, Inc., 1990

[4] Teamwork System Administrator's Manual, Release 4.0, Cadre Technologies, Inc.,
1991

N00014-91-C-0240 Final Repon -Revised July 1992 25

Appendix A

CMS RET User's Manual

I

CMS RET User's Manual

1.0 Introduction

The CMS Reverse Engineering Tool (RET) consists of CMS Rev and Teamwork/SD. CMS Rev has been
developed by GE CR&D and provides the ability to process CMS-2 source code and create a software
maintenance database. This software maintenance database consists of a Teamwork database of structure
charts, module specs, data dictionary entries and collateral files which contain information about the struc-
ture and contents of the source code being maintained. Teamwork/SD is a commercially supported product
available from Cadre Technologies. It has been augmented by user menus, shell scripts and access programs
to provide a customized and enhanced environment which utilizes the software maintenance database cre-
ated by CMS Rev.

This CMS RET User's Manual describes the procedures for using the RET software maintenance database.
These procedures involve the use of the Teamwork/SD product from Cadre Technologies. The section Using
the RET Database documents the basic operations that the software maintainer would need to perform in
order to utilize the software maintenance database.

Also contained in this manual are the procedures for creating the RET software maintenance database using
CMS Rev, related programs and shell scripts. These procedures are performed in batch mode when neces-
sary because of a new release of the source code being maintained, or as a result of new version of CMS
Rev. The section Building the RET Database documents the steps necessary to build a new RET software
maintenance database. The section Installing the RET Processors documents the steps necessary to install
CMS Rev, related programs and shell scripts before beginning the process of building a new RET database.

2.0 Using the RET Database

2.1 Invoking RET

RET is invoked by executing Teamwork using the RET configuration file. This can be accomplished by
manually typing the Teamwork command or by selecting the appropriate menu item from an OpenWindows
workspace menu. The user then interacts with Teamwork to access the RET software maintenance database.
The RET configuration file provides the user with access to the customized RET menus and to the special-
ized programs which access the RET software maintenance database.

A number of setup operations need to be performed before RET can be invoked: (1) Modify the Unix PATH
variable to include the Teamwork directories. (2) Initialize the Unix environment variable RETDBHOME
to specify the RET root directory. (3) Verify that the Teamwork DC server is running on the Teamwork
workstation server.

2.2 Using the Online Help

Each of the RET menus has a menu selection titled "Display Help Screen" that is the last selection on the
menu. Selecting this menu item will cause the context sensitive help screen to be displayed in a Teamwork

1. The current prototype handles a subset of the dialect known as CMS-2L. This subset is detailed in
Detailed Design for CMS-2 to Ada Translation, delivered to NSWC in January 1992.

Appendix A July 1992

I window. In addition to a description of each menu item available to the user, there may appear hints to the
user on how to perform specific operations.

I2.3 Selecting the Model of Interest

The first operation that the user must perform is to select the model of interest. Any further operations will
then pertain to is model which corresponds to a Unix directory.

The model of interest is selected by pulling down the Index menu from the desktop menubar, and selected
the menu item titled "Open Model Index." This will cause a list of the models in the Teamwork database to
be displayed. Highlight the model of interest and select "Open PI" from the pullright menu. The Teamwork
process index for the selected model will be displayed. From this process index window, the user may access
structure charts, module specs, and the data dictionary associated with the selected model.

2.4 Navigating Structure Charts

Structure charts provide a graphical representation of the calling relationships between software modules.
The structure chart can be used as a "map" to guide the software maintainer in his/her understanding of the
underlying software. Off-page connectors are used in structure charts so that the amount of information on a
given structure chart is not excessive. The intent is to maintain readability when RET-generated structure
charts are printed on 8 1/2 by 11 inch pages.

ITo navigate downward in the module calling hierarchy using structure charts, the user may open the struc-
ture charts for a specified off-page connector. This is accomplished by selecting the off-page connector with
the mouse select button (left mouse button), palling down the RET menu from the structure chart menubar
and selecting the menu item titled "Expand Connector." The structure chart for the off-page connector will
then be displayed.

To navigate upward in the module calling hierarchy using structure charts, the user may request to display a
list of modules which call the current module. The current module is, by default, the module at the top of the
structure chart. The user may override this default module by explicitly selecting another module on the
structure chart as current. The list of calling modules is obtained by pulling down the RET menu from the
structure chart menubar, and selecting the menu item titled "Display Calling Modules." This will cause a file
window to open with a listing of calling modules. Any line of this file display may be selected to request the

structure chart for that calling module by pulling down the RET menu from the file menubar and selecting
the menu item titled "Open Structure Chart." The structure chart for the selected calling module will then be
displayed. (NB: this is not currently working. Workaround: choose "Open Module Spec" from the RET
menu and then choose "Show SC" from the WholeMspec menu).

I During the search, an icon is displayed with the title "CALL." This icon will disappear when the search is
completed, and at that time a Teamwork window will display the results of the search. The "Display Calling
Modules" request may be aborted using the normal Unix window procedure to quit a task represented by the
CALL icon.

2.5 Selecting the Module of Interest

A module is a CMS-2 subprogram. Modules are identified by the RET and a module spec is created for each
module. In addition, the boxes on structure charts are used to represent modules.

Modules are listed on the process index which is displayed when the model of interest is selected. The pro-
cess index lists the module specs and structure charts that are contained in the Teamwork database. The
module of interest may be selected from the process index, and then either a module spec or a structure chart

Appendix A July 1992 2

may be opened. Each process index entry has a SC or MS indicated. SC refers to structure chart and MS
refers to module spec. A structure chart may be opened by selecting a module name flagged with an SC,
pulling down RET from the process index menubar and selecting the menu item titled "Open Structure
Chart." A module spec may be opened by selecting a module name flagged with an MS, pulling down RET
from the process index menubar and selecting the menu item titled "Open Module Spec."

Structure charts show the calling relationships between modules. The module of interest may be selected
from a structure chart by pointing the mouse cursor at the structure chart that represents the module of inter-
est. and pressing the select mouse button (left mouse button). Then, the user may pull down the RET menu
from the structure chart menubar and select the desired menu item. The module of interest may be selected

from a module spec by selecting the text in the module spec body which is the name of the module of inter-
est. Text in the module spec body is selected by moving the mouse cursor on top of the first letter in the text
string. The mouse cursor should turn from an arrow into a block. The select mouse button (left mouse but-
ton) is then pressed and the mouse cursor is dragged across the letters of the text string. The selected text
will appear in reverse video. Then, the user may pull down the RET menu from the module spec menubar
and select the desired menu item.

2.6 Determining Module Interfaces

A module interface is a relationship between modules where one module calls the other module. Module
interfaces are represented graphically by structure charts, and textually by information in module spec bod-
ies. Module interfaces may be obtained by displaying the appropriate structure chart or module spec. From a
module spec, the user may open a Teamwork window for the structure chart containing the module spec.
This is accomplished by pulling down the WholeMspec menu from the module spec menubar, and select-
ing the menu item titled "Show SC." This will cause the appropriate structure chart to be displayed.

2.7 Viewing Module Source Files

Module source files are the raw CMS-2 source files. Module source files may be displayed by selecting the
module of interest from a structure chart, or from a module spec body. Then, the RET menu item titled "Dis-
play Module Source" may be selected to complete the request for a Teamwork file window to be opened on
the raw source file.

An important distinction to remember is that the name of a module is not necessarily the same as the name of
the source file containing the module. The boxes on structure charts and the "calls" and "called by" section
of the module spec body all use module names, not file names.

2.8 Searching Source Files for Text

A facility for searching raw source files has been built into RET. This facility is available from the process
index menubar. The user selects the model of interest and opens the appropriate Teamwork process index
window. The user then pulls down the RET menu from the process index menubar, and selects the menu
item titled "Search Source Files." This causes a Teamwork input window to be displayed which requests the
user to input the filename and text patterns. The filename pattern is a standard Unix filename pattern, includ-
ing the use of ? and * for wildcards. The text pattern is a grep regular expression, which needs to be enclosed
within either single or double quotes if the text pattern contains special characters.

After the filename and text patterns are input, a Unix task is invoked to perform the search on the source
files. During the search, an icon is displayed with the title "SCH." This icon will disappear when the search
is completed, and that time a Teamwork window will display the results of the search. The "Search Source
Files" request may be aborted using the normal Unix window procedure to quit a task represented by the
SCH icon.

Appendix A July 1992 3

Source files may also be searched across all CSCIs. This is accomplished using the "Search Source Files"
menu item on the RET menu of the Teamwork desktop menubar.

2.9 Selecting the Global Variable of Interest

Global variables are variables which are used outside of the module in which they are declared. These global
variables are listed alphabetically within the data dictionary for each model, and also as part of the module
spec for modules which reference the global variable. The data dictionary is displayed for the model of inter-
est by pulling down the "Whole._Model" menu from the process index menubar, and selecting the menu item
titled "Open DD." This will cause the requested data dictionary to be displayed. The global variable of inter-
est may be selected from this display of the data dictionary by moving the mouse cursor to the desired line ofthe data dictionary and pressing the select mouse button (left mouse button).

When a module spec is displayed, the global variables listed may also be selected as the global variable of
interest. This is accomplished by moving the mouse cursor on top of the first character of the name of the
global variable. The mouse cursor will change from an arrow to a block. The user presses the mouse select
button (left mouse button) and drags the cursor across the global variable name until all the characters are in
reverse video. At this point, the global variable of interest on the module spec has been selected.

2.10 Viewing Data Dictionary Definition of Global Variables

The data dictionary contains an entry for each global variable. This entry contains information about the glo-
bal variable, including the actual declaration of the global variable, and information about the raw or
expanded source files. The declaration contains the type of the variable if the variable is an item. If the vari-
able represents a table, then the declaration contains information about the types of the items in the table.

When a global variable of interest has been identified from the data dictionary display, then the RET menu
from the data dictionary menubar is pulled down, and the menu item titled "Open DDE" is selected. This
will cause the data dictionary entry to be displayed. When the global variable of interest has been identified
from the module spec display, then the RET menu from the module spec menubar is pulled down, and the
menu item titled "Open DDE" is selected. This will cause the data dictionary entry to be displayed.

A data dictionary entry may reference other data dictionary entries. This happens when the global variable
represents a table or a block. In these cases, the name of the referenced data dictionary entry may be selected
and the RET menu may be pulled down from the data dictionary entry menubar, and the menu item titled
"Open DDE" selected. This will cause the selected data dictionary entry to be displayed in a new data dictio-
nary entry window.

2.11 Searching Module Specs for Variable References

Global variables are associated with modules, and their module specs. A capability exists to perform a
search for the modules which reference a particular global variable. This search is performed when the user
selects a global variable of interest, from either the data dictionary or a module spec, pulls down the RET
menu from the respective menubar, and selects the menu item tided "Display Where Ref."

After the global variable cross reference is initiated, a Unix task is invoked to perform the search within the
Teamwork database. During the search, an icon is displayed with the title "REF." This icon will disappear
when the search is completed, and at that time a Teamwork window will display the results of the search.
The "Display Where Ref" request may be aborted using the normal Unix window procedure to quit a task
represented by the REF icon. Module specs for modules identified in the cross reference display may be dis-
played by selecting the name of the module in the cross reference display, pulling down the RET menu from

Appendix A ly 1992 4

the file menubar, and selecting the menu item titled "Show Module Spec." This will cause the respective
module spec to be displayed.

Global variable cross references may also be performed across all CSCIs. This is accomplished using the
"Display Where Ref All" menu item on the RET menu of the data dictionary or module spec menubar.

2.12 Printing From the RET Database

The user may obtain printouts of the process index, the data dictionary index, structure charts, module specs,
data dictionary entries, any Teamwork file window that has been opened, and any expanded module source
file.

2.13 Terminating Teamwork

Before terminating Teamwork, be sure that all Teamwork windows have been closed. Then, pull down the
"Stop" menu from the desktop menubar and select the menu item titled "Quit". This will terminate the cur-
rent Teamwork session.

3.0 Building the RET Database

13.1 CMS Rev Processor

CMS Rev consists of three (3) separate passes. These passes combine to process the CMS-2 code, to process
the comments and to generate the output files used to create the RET software maintenance database. The
CMS Rev processor can be executed using the shell script called build-ret which is listed in the last section
(Details of Setup). This shell script takes care of deleting old versions of the build log files, and allows the

user to monitor its execution with time and date stamped messages informing the user of what pass is cur-
rently being executed. The file $RETDBHOME/src/csci-build is used to determine which CSCIs are
being processed by CMS Rev in the current execution.

3.2 CMS Rev Post-Processors

The CMS Rev post-processors augment the processing performed by CMS Rev. Two operations are per-
formed: (1) modify some CMS Rev output files before they can be used by the RET interactive programs,
and (2) analyze some CMS Rev intermediate output files to create additional output files for use by the RET
interactive programs. This CMS Rev post-processing has been combined into a shell script called build-twk.
This shell script should be executed once for each CSCI.

j3.3 C Rev and twkput Processors

The C Rev and twk~pot processors are Teamwork programs which are used to load the Teamwork data base.
C Rev uses CMS Rev output to create structure charts in the Teamwork database. twk-put uses CMS Rev
output to create both module specs and data dictionary entries in the Teamwork database. A shell script
called ret.script is created by CMS Rev to be used in loading the Teamwork database.

Appendix A July 1992 5

4.0 Installing the RET Processors

4.1 Teamwork Processors

The Cadre Teamwork products that must be installed include Teamwork/SD and Teamwork/C Rev. The
Teamwork/C Rev Browser is not needed by the RET.

4.2 CMS Rev Processors

The CMS Rev processors consists of multiple passes as follows: cms2cdif.p3, cms2cdif.p4a, cms2cdif.p4b,
and cms2cdif.p4c. These executable programs should be installed before CMS Rev can be used to build the
RET database.

4.3 CMS Rev Post-Processors

The CMS Rev post-processors consists of the following programs:

build-ret
build-twk
build-csc
do-errors

5.0 Details of Set-up

5.1 Environment Variables

There is on major environment variable which must be set before running RET:

RETDBHOME - the directory in which all the executables and shells live

5.2 Scripts (preliminary versions)

There are several scripts which are useful in running RET (although it can be run manually). These scripts
can be found in RET DBHOME/admin, and they are as follows:

build-ret - a multi-function script which asks for user direction upon invocation. It's current
functions are: CMS Rev Pass3; CMS Rev Comment Extraction; CMS Rev Pass4;
Post-Process CMS Rev; Create Teamwork Database; Dump Teamwork Database; and
Restore Teamwork Database. The user is encouraged to review the script in order to
get an understanding of how RET is put together.

go-ret - a script which invokes Cadre Teamwork with the proper configuration file, etc.

5.3 Directories

There are two directories which the user should set up for each model. The first is $RETDBHOME/stc/
modelname, This directory should contain the source files for the model. (This may be a soft link, if it

Appendix A July 1992 6

proves convenient.) The second directory is $RETDBHOME/Ist/model_name. This should be created as
an empty directory. CMS RET places files in there during its processing.

5.4 Files

There are two files which the user may wish to update. They are SRETDBHOME/dat/csci-build and
SRET_DBYQME/dat/csci-names. These are normally not needed for RET, but can be useful for rebuilding
the entire system via build-ret. They should contain the model names for the system, one per line.

There is one file which the user must add to the $RETDB HOME/src/modeLname directory: limit.tXL
This file should have exactly one line in it which says "do globals".

A

I

Appendm A July 1992 7

Appendix B

Introduction to ENCORE Internal
Representation

Introduction to the ENCORE Internal
Representation

The Purpose of the Internal Representation.

The purpose of the ENCORE Internal Representation (or IRep, for short), is to allow the
various tools in ENCORE to manipulate Ada programs in a straightforward and uniform
way.

Some goals in the IRep design were:

1. There should be a logical abstract description of the IRep.

2. The IRep should be accessible via a logical interface that is independent of the physical
representation of the IRep in memory.

3. There should be a clean separation between lexical information and semantic informa-
tion.

4. One should be able to reconstruct the original source to an Ada program from the IRep
(modulo differences in formatting).

The Logical Structure of the Internal Representation

Logically, the IRep is a tree, with some backlinks for handling references to definitions
and labels, and symbol table structures to capture Ada programs. (The tree structure is
quite similar to DIANA, the standard internal representation for Ada.) Each tree repre-
sents the statements in the Ada code and the symbol tables represent the scoping and visi-
bility rules for the identifiers found in the code.

The IRep Program Tree

The tree structure consists of 'nodes' and 'attributes.' The nodes represent the information
in the tree, while the attributes represent the edges of the tree.

The nodes are grouped into 'classes,' each class corresponding to a kind of Ada construct.
The attributes are also grouped into named classes. As an example, consider the class of
nodes corresponding to Ada assignment statements. Each such node must belong to the
class 'assignmenLstmt.' Furthermore, each such node must have two attributes -- one
called 'target,' representing the destination of the assignment, and the other called
'source,' representing the expression to be assigned.

Appmdix B May I992

1. ADL: The Metalanguage Used to Describe the IRep Trees

The IRep tree is specified in a metalanguage called the Augmented Description Language,
or ADL, for short.

An ADL description consists of a series of 'productions.' The productions, in turn, can be
of the following kinds: stub productions, primitive productions, node productions, and
class productions.

1.1 Stub Productions

Stub productions have the syntax

stub <name>;

These productions are used to define certain special nodes that are used in processing Ada
programs. There are exactly two stub productions

stub Empty;
stub Undefined;

The first production defines the 'empty' node, which is generally used to an optional
attribute that is not supplied (for example, a missing 'else' clause in an 'if' statement. The
second production generally indicates either an error condition or an unsuccessful opera-
tion. For example, the value returned by an unsuccessful symbol table search is the 'unde-
fined' node.

1.2 Primitive Productions

Primitive productions have the syntax

primitive <name>;

Primitive productions are used to define external data types that are used as data at the
leaves of the IRep trees. The actual productions used in the Ada IRep tree are

primitive Boolean;
primitive Character,
primitive Float;
primitive Integer,
primitive String;
primitive Symbol;

The first five productions correspond to the five predefined scalar types in the Ada pack-
age Standard. The sixth production, 'Symbol,' corresponds to the type 'Symbol,' defined
in the package 'IFormSymbols.' This Symbol type is used to represent Ada identifiers.

Appendix B May 1992 2

1.3 Node Productions

Node productions have the form

<name> => <attrl-name>: <attr -descriptor>,
<attr2-name> : <attr2-descriptor>, ... ;

Node productions describe the internal structure of an IRep tree. The left hand side of a
node production indicates the class of the node involved, while the right hand side gives
the names and attributes of a node of that class.

Attributes can be either simple attributes, whose value is a node, or sequence attributes,
whose value is a sequence of nodes. Simple attributes have the form

<class-name>

while sequence attributes have the form

seq of <class-name>

An example of a node production having simple attributes is given by the production for
an Ada assignment statement, which is written

assignment_stint => source : EXP,
target: REFERENCE;

This production states that each node of the class 'assignment-stmt' has two attributes, a
'source' attribute, whose value must be of class 'EXP,' and a 'target' attribute, whose
value must be of class 'REFERENCE.'

As an example of sequence attributes, consider the production for an Ada else clause,

which is written

elseclause => statements : seq of STMT,

This production says that each node of class 'else_clause' has the attribute 'statements,'
whose value is a sequence of nodes of class STMT.

One final note. It is possible that a particular class of IRep tree node might not have any
attributes. An example is the class of node that represents 'null' statements in Ada. The
production for this class is written

nullstint => ;

We use a node production, rather than a stub or primitive production because

1. there can be more than one node of class 'null_stmt' in an IRep tree structure, which
rules out using a stub production, and

Appendix B May 1992 3

2. the class 'nullstrnt' is not imported from another package, which rules out using a

primitive production.

Class Productions

Class productions have the form

<class-name> ::= <subclass 1> I <subclass2> I ...,

The classes on the right hand side of the production are called subclasses of the class on
the left hand side.

Class productions are used for two purposes:

1. To group certain classes together in a manner similar to union types in some program-
ming languages, and

2. To enable several classes to inherit one or more attributes.

A production thrt satisfies the first purpose is

ACTUAIAL_COMPONENT::- association I otherspart I EXP;

This production says that a node of class 'ACTUAL.,_COMPONENT' can be either of
class 'association,' class 'otherspart,' or class 'EXP.' Thus the node production

aggregate => components: seq of ACTUAL-COMPONENT;

indicates that a node of class 'aggregate' has an attribute called 'components,' which can
take, for its value, a sequence of nodes, each member of which must be either an 'associa-
tion,' an 'otherspart', or an 'EXP.'

To illustrate the second purpose of class productions, suppose we have several different
kinds of nodes that possess a given attribute. In Ada, for example, package specifications,
package bodies, procedure specifications, procedure bodies, etc. all have an attribute
called 'designator,' which denotes the name of the unit. Rather than include a separate
'designator' attribute in each node production, we could write the two following produc-
tions:

SINGLEDESIGNATORITEM => designator: Symbol;

SINGLEDESIGNATORITEM ::= pkgspec I pkg.bdy I proc-spec I ... ;

The attribute 'designator' will then be inherited by all subclasses of the class
'SINGLE_DESIGNATORITEM.'

Appendix B May 1992 4

2. The External Representation of IRep Tree Structures

Externally, IRep tree structures are represented as one or more node structures. Node
structures are represented differently, depending on the kind of node involved.

1. Stub nodes are represented by the name of the stub class; thus the two stub nodes in the
Ada IRep tree are represented by

Empty
and

Undefined

2. Primitive nodes are represented by the class name, followed by the primitive value,
enclosed in parentheses. Some examples are

Boolean(TRUE)
Integer(3)
Float(5.38)
Character('a')
String("Abc")
Symbol("ABC")

3. Structure nodes may be represented by the class name, followed by the attribute names
and values, enclosed within square brackets. An example is

assignment-stmt[target n_103A,
source Integer(3)]

4. A structure node may be preceded by a label. This indicates that the node can appear as
an attribute in more than one place in an Ada IRep tree. An example is

n_103: named_ref[designator Symbol("x"),
target n102A]

5. Finally, a labeled node can be represented simply by its label, followed by a caret, as in
the reference n_102A in the previous example. This allows us to represent circular data
structures in a linear ASCII form.

3. The Ada Interface to the Internal Representation

The interface to the Ada IRep tree is provided by three packages: AdaTranRecords,
PrimitiveNodeCreation, and Primitive_AdaTranInterface. The package
AdaTranRecords contains the definition of IRep tree nodes and sequences; the package
PrimitiveNodeCreation provides functions for building IRep tree nodes; and the pack-
age
PrimitiveAdaTranInterface provides functions for accessing and changing the value
of the attributes of nodes.

Appendix B May 1992 5

3.1 The Package AdaTranRecords

The package AdaTranRecords contains the following definitions.

3.1.1 The Type AdaTranNodeKind

The type AdaTran_Node_Kind is an enumerated type that is used to indicate the class of
any given IRep tree node. The definition is

type AdaTranNodeKind is (kUNDEFINED,
k_EMPTY,
-- Primitive Node Classes
k_Boolean,
kCharacter,
k_Float,
k_Integer,
k_String,
k_Symbol,
-- Structured Node Classes
k_ABORT,
k_ACCEPT,

k_W-HELEM);

Note that the names of the various node kinds are all prefixed with 'k_.' This avoids any
clashes with Ada reserved words. For example, ABORT and ACCEPT would class with
the reserved words 'abort' and 'accept' in Ada, unless we modified them somehow.

3.1.2 The Type AdaTran Node

The type AdaTranNode corresponds to the IRep tree nodes for Ada. It is implemented as
a pointer to a record, which contains all the attribute information for the node. Thus, we
have the definition

type AdaTran_NodeImplementation(Kind: AdaTranNode_Kind) is
record

end record;

and the definition

type AdaTran_Node is access AdaTran_Node_Implementation;

Appendix B May 1992 6

I

3.1.3 The Type SeqOfAdaTranNode

The type Seq OfAdaTran_Node corresponds to sequences of AdaTran nodes. It is cre-
ated by instantiating the generic package SEQ on the type AdaTran_Node. Thus, we have
the three definitions

package AdaTranNodeSeqs is new SEQ(AdaTran_Node, Eq, Equal);

subtype Seq Of_AdaTran_Node is AdaTran_NodeSeqs.Seq;

function NewSeqSOfAdaTran_Node return Seq OLAdaTranNode
renames AdaTranNodeSeqs.NewSeq;

The generic package SEQ provides a set of routines for creating and manipulating linked
lists. Instantiating this generic package for the type AdaTranNode, makes these opera-
tions available for use on nodes. In order to use these operations on sequences of AdaTr-
anNode(s), it is necessary to insert the clause

use AdaTranNode._Seqs;

in the declaration part of the unit that uses these routines.

The subtype SeqOf_AdaTranNode corresponds to sequences of nodes.

The function New_Seq OfAdaTranNode returns the empty sequence.

3.1.4 The Functions Eq and Equal

In dealing with a complicated structures, like AdaTran_Node(s), it is sometimes necessary
to make a distinction between equivalence and identity in comparing nodes. The function
Eq, defined by

function Eq(x, y : AdaTranNode) return Boolean;

returns true if and only if x and y are the same node. On the other hand, the function Equal,
defined by

function Equal(x, y : AdaTranNode) return Boolean;

returns true if and only if x and y are equivalent. In this case we require that x and y be of
the same class and that all the corresponding attributes of x and y be Eq.

3.2 The Package PrimitiveNodeCreation

The package Primitive_NodeCreation provides functions for constructing new nodes.
These consist of the generalized node creation functions, the functions for building primi-
tive nodes, and the functions for building structured nodes. A node, once created, can be
stored in the node data base (a table in memory that holds AdaTran nodes with symbols as

Appendix B May 1992 7

the keys). The user can even specify the name under which the node should be stored. This
data base is meant to provide unique names for all nodes that are attributes of two or more
other nodes. Many of the node creation functions have a parameter called 'Label' or
'NodeLabel,' which defaults to TheSymbeLUndefined. If the user does not specify a
name, the system will generate one, if necessary.

3.2.1 The Generalized Node Creation Functions

The generalized node creation functions are

function RawAdaTranNode(Kind : AdaTran_NodeKind)
return AdaTranNode;

and

function NewAdaTran-Node(Kind: AdaTranNodeKind;
Label: Symbol := TheSymbolUndefined)

return AdaTranNode;

The function RawAdaTran_Node simply creates a new, uninitialized instance of an
AdaTran_Node. It will rarely be used by the programmer, however, since it is at a very
low level and requires that the programmer devote considerable attention to low-level
details.

The function New_AdaTran_Node, on the other hand, will handle many of the low level
details necessary to maintain consistency in the node data base. Thus, it can be used more
effectively by the programmers of ENCORE tools. The optional parameter 'Label,' indi-
cates a name under which the node is to be stored in the node data base.

3.2.2 Functions for Building Primitive Nodes

The package PrimitiveNodeCreation provides a number of functions for building prim-
itive, or scalar, nodes, such as integers, strings, booleans, etc. Many of these functions are
overloaded, in order to allow different types of parameters. Consider, for example, the
function MakeInteger. There are three different versions

function MakeInteger(X : Integer) return AdaTranNode;
function MakeInteger(X :String) return AdaTranNode;
function MakeInteger(X : A_String) return AdaTranNode;

The first Make_Integer function allows one to build a node from an actual integer. The
second allows one to build a node from a string that represents an integer. Finally, the third
allows one to build a node from a pointer to a string.

The other creation functions for primitive nodes are MakeBoolean, MakeCharacter,

Make_Float, MakeString, and Make_Symbol.

Appwdix B May 1992 $

There is also one function for building up sequences of symbol nodes. This is the function

defined by

function MakeSeqOLSymbol(S : SeqOLSymbol) return SeqOf_AdaTran-Node;

This function accepts a sequence of actual symbols and builds a sequence of nodes, each
of type k.Symbol.

Functions for Building Structured Nodes

The functions for building structured nodes allow the user to build a complete node with
all the attributes in place. Some examples are

function Make_Abort(pTasks : Seq_Of_AdaTranNode;
Node_Label : Symbol := The _SymbolUndefined)

return AdaTran-Node;

function MakeFuncSpec(p Body : AdaTran Node;
p-Context: Seq OfAdaTranNode;
pjDesignator: AdaTranNode;
parameters : Seq_OfAdaTranNode;
pRetumrn Type : AdaTranNode;
NodeLabel : Symbol:- TheSymbolUndefined)

return AdaTranNode;

function MakeOthers(NodeLabel : Symbol:= The_SymbolUndefined)
return AdaTranNode;.

The names of parameters that correspond to attribute values are all prefixed with 'p.'
This avoids any clashes with Ada reserved words. For example, several classes of node
contain an attribute called 'type.' This would cause a conflict with the reserved word
'type' in Ada, unless we altered the name somehow.

3.3 The Package PrimitiveAdaTran Interface

The package PrimitiveAdaTran_Interface provides routines for accessing and manipulat-
ing AdaTranNodes.

3.3.1 The Function Kind

The function Kind, defined by

function Kind(x : AdaTran_Node) return AdaTranNode;

Appendix B May 1992 9

allows the user to query a node as to its class. Quite often the various ENCORE tools will
use a case-statement based on the result of Kind(x), then perform different operations
depending on the actual kind of the node.

3.3.2 Accessing Primitive Nodes

Primitive nodes can't be altered, so the only operation available is to retrieve the actual
primitive values from the nodes. For example, we can retrieve the integer value of an inte-
ger node. The actual functions are

function AsBoolean(N : AdaTran_Node) return Boolean;
function AsCharacter(N : AdaTran-Node) return Character,
function AsFloat(N : AdaTranNode) return Float;
function AsInteger(N : AdaTranNode) return Integer,
function AsString(N : AdaTran_Node) return String;
function As_ A String(N : AdaTranNode) return A_String;
function AsSymbol(N : AdaTranNode) return Symbol;

The function As_A_String needs some additional comments. The type AString is an
access type whose values are pointers to strings (AString is described in the package
Basic_Strings). With string nodes, it is important to be able to view the string value of a
string node as either an actual string or as a pointer to a string. This is because the type
String in Ada is an unconstrained array type, which is inconvenient to use in some con-
texts.

Finally, there is a function defined by

function AsSeqOfLSymbol(S : SeqOfAdaTran_Node)
return SeqOfAdaTranNode;

This function takes a sequence of AdaTranNode(s), all presumed to be of type
kSymbol, and returns a sequence of Symbols. As such, it is the reverse of the function
MakeSeqOfSymbol, defined in the package PrimitiveNodeCreation.

3.3.3 Accessing Structure Nodes

For each attribute name, there are two corresponding functions, a 'Get_' function and a
'Set_' function. The Get function retrieves the attribute of the given name, while the Set
function assigns a value to the attribute. Two examples are

GetType(N AdaTran_Node) return AdaTranNode;
Set-Type(N AdaTranNode; ToBe : AdaTranNode);

and

GetDeclarations(N AdaTran_Node) return SeqOfAdaTranNode;
SeLDeclarations(N AdaTran_Node; To.-Be : SeqOfAdaTranNode);

Appendix B May 1992 10

The first two functions provide access to the 'type' attribute of any typed node, such as a
vardecl, const_decl, etc.

The last two functions provide access to the 'declarations' attribute for any node corre-
sponding to a scope. These include nodes of class pkg.spec, pkg-bdy, block, etc.

Appendix B May 199

Appendix C

ADL Description of the Ada Internal
Representation

-- ADL Description of the Ada Internal Representation

module AdaTran is

-- Primitive Node Types

primitive Boolean;
primitive Character,
primitive Float;
primitive Integer,
primitive String;
primitive Symbol;

stub Empty;
stub Undefined;

-- Structured Classes

-- 2.8 pragmas

pragma =>
designator: Symbol,
parameters: seq of EXPORASSOCIATION;

EXP_ORASSOCIATION ::= EXP I association;

-- 3. declarations and types

-- 3.1 declarations

DECL ::= pragma I useelem I

MULTIPLE_DESIGNATORSITEM I REP I SINGLEDESIGNATOR ITEM;

-- 3.2 objects and named numbers

MULTIPLEDESIGNATORSITEM ::= numdecl I var_decl I consLdecl;

EXPOREMPTY ::= EXP I Empty;

SUBTYPEINDICATION := constrainedreference REFERENCE;

num_decl =>
designators : seq of Symbol,
initial_value: EXPOREMPTY,
referencers : seq of named-ref,

Appmdix C May 1992

type SUBTYPEINDICATON;

var_dccl =>Iconstraints seq of CONSTRAINT,
designators seq of Symbol,
initial-value: EXP_-OREMPTY,
referencers. seq of named-ref,
type :SUBTYPEINIDICATION;

const-dccl =>
constraints :seq of CONSTRAINT,~
designators seq of Symbol,
initial-value: EXP_-OREMPTY,
referencers : seq of named-ref,
type : SUBTYPEINDICATION;

-3.3 types and subtypes

-3.3.1 type declarations

SINGLEDESIGNATORITM::= type-lecl I subtype-decl;

type-.decl =>
designator: Symbol,
info : TYPEINFO,
referencer : direct..ref;

-- 3.3.2 subtype declarations

subtype-dccl =>
base_type : SUBTYPE _INDICATION,
constraints: seq of CONSTRAINT,
designator :Symbol,
referencer :direct-ref;

-- 3.4 derived type defintions

TYPEINFO ::= derived-typeinfo;

derived .jypeinfo =>
base-type : SUBTYPEINDICATION,
constraints: seq of CONSTRAINT;

Appacnix C May 199 2

-3.5 scalar types

TYPEINFO ::= enumerated-type-info;

enumerated-type-info =>
values: seq of enumeration-literal;

enumeration~literal =>
base-type: SUBTYPEINDICATION,
type :direct-ref,
value :SYMBOL_,ORCHARACTER;

SY]MBOL_,ORCHARACTER ::= Symbol I Character

-- 3.5.4 integer types

TYPEINFO ::= integerj-ype-lnfb;

integer-type-info =>
range: SIMPLERANGE;

-3.5.9 real types

TYPEINFO ::= REALTYPE_ INFO;

REALTYPEINFO ::= float-type-info;
float-type-info =>
digits: EXP,
range : SIMPLERANGEOREMPTY;

REALTYPEINFO ::= fixed-typejinfo;
fixed-type-info =>

delta : EXP,
range: SIMPLERANGEOREMPTY;

SIMPLERANGE_ORE]MPTY ::= SIMPLE_RANGE I Empty;

-- 3.6 array types

TYPE_INFO : =array typeino;

arrayjypeinfo =>
base-type: SUBTYPEINICATION,
ranges : seq of RANGE;

RANGE ::= discretejrange;

Appendix C may 199 3

J SIMPLERANGE:: discrete-range;

discrete-range =>
base_type: SUBTYPEINDICATION,
max :EXP,
min: EXP;

RANGE ::= indexconstraint;

indexconstraint =>
base-type: SUBTYPEINDICATION,
max :EXP,
min: EXP;

RANGE ::= universalindex..range;

universal_index_range =>
base type: SUBTYPEINDICATION,
max :EXP,
min :EXP;

RANGE ::= universaljintegerjange;

universajntegerjange =>
base_type: SUBTYPEINDICATION,
max :EXP,
min EXP;

RANGE ::= REFERENCE;

-- 3.7 record types

TYPEINFO ::= record..sypeinfo;

record~typeinfo =>
components :seq of component-decl,
discriminant: seq of component-decl;

MULTIPLEDESIGNATORSITM::= component-dccl;
COMPONENT ::= componen~dec11I pragma;

component_dccl =>
constraints :seq of CONSTRAINT,
designators :seq of Symbol,
initial-value: EXPOREMPTY,
referencers : seq of name&.ref,
type :SUBTYPEINDICATION;

Appendix C May 199 4

COMPONENT:: null-component;

nullcomponent => ;

COMPONENT:: variant~part;
variant~part =>
discriminator: namedjref,
variants :seq of variant;

variant =>
choices : seq of CHOICEOROTHERS,
components: seq of COMPONENT;

j CHOICE_OROTHERS ::= EXP I GENERALDISCRETE_-RANGE I others;

others =>;

-- 3.8 access types

TYPEINFO ::= pointerj-ypejnfo;

pointer ypeinfo =>

base-type: SUBTYPEINDICATION;

-- 3.8.1 Incomplete Type Declarations

TYPEINFO:: TYPESTUB;

TYPESTUB ::= incomplete-typeijnfo;

incompletetypeinfo =>
completion : DIRECTI>REF_-OREMPTY,
discriminant: seq of component deci;

TYPESTUB ::= private-typeinfo;

privatetypeinfo =>
completion : DIRECTREF_-OREMPTIY,
discriminant : seq of component-dccl;

TYPESTUJB ::= limitec-privatetypejinfo;

limited-privatejpnf r>

completion : DIRECTREF_-OREMPTY,
discriminant: seq of component dccl;

Appendix C may 199 5

TYPEINFO::= type-completioninfo;
type-completion-info =>
info: TYPEINFO,
stub : DIRECTREFOREMPTY;

DIRECT_REF_OR_EMPTY::= direct_ref I Empty;

-- 3.9 declarative parts

--4 names and expressions

-- 4.1 names

-- 4.1.1 indexed components

REFERENCE::= indexedref;
indexed_ref =>

indices : seq of EXP,
representations: seq of REP,
target : EXP;

-- 4.1.2 slices

slice =>
range : GENERALDISCRETERANGE,
target : EXP;

GENERALDISCRETERANGE ::= constrained_reference I REFERENCE I SIM-
PLE_RANGE;

-- 4.1.3 selected components

REFERENCE ::= componenLref;

component_ref =>
component : EXP,
representations: seq of REP,
target : EXP;

-- 4.1.4 attributes

SIMPLE_RANGE ::= attribute;

attribute =>

Appmedix C May 1992 6

designator: Symbol,
exp : EXP;

SIMPLERANGE ::= attribute-call;

attribute_call =>
attribute : attribute,
exp : EXP;

-- 4.2 literals

EXP::= LITERAL;

LITERAL := Boolean I Integer I Float I Symbol I Character I String;

-- 4.3 aggregates

LITERAL ::= aggregate;
aggregate =>
components: seq of ACTUALCOMPONENT;

ACTUALCOMPONENT ::= association I others_part I EXP;

otherspart =>
exp : EXP;

-- 4.4 expressions

EXP ::= REFERENCE;

-- 4.4.B relations

EXP ::= membership;

membership =>
exp EXP,
op : MEMBERSHIPOP,
set : discreterange;

MEMBERSHIPOP::= in_op I not-in;

inop =>;

not_in -->;

-- 4.5 operators and expression evaluation

Appendix C May 1992 7

-See Function Calls

-4.6 type conversions

EXP ::= QUAL-CONV;,
QUAL CONV :=conversion;

conversion =>
exp : EXP.
type: SUBTYPEINDICATION;

-- 4.7 qualified expressions

QUALCONY ::= qualified-expression;

qualifiec~expression =>
exp : EXP,
type : SUBTYPE_INDICATION;

-4.8 aiiocators

EXP ::= ALLOCATOR;
ALLOCATOR ::= uninitialized-allocator

uninitialized_allocator =>
constraints: seq of CONSTRAINT,
object -type : SUBTYPE_-INDICATION,
type : SUBTYPEINDICATION;

ALLOCATOR ::= initialized_allocator,

initialized_allocator =>
constraints: seq of CONSTRAINT,
expr : qualified-..expression,
type : SUBTYPEINICATION;

EXP ::= nulljexp;

null_exp =>;

-- 5 Statements

STMT ::= pragma;

STMT ::= labeled..stmnt;

Appendix C May 1992

labeledtstint =>
labels :seq of Symbol,
referencers: seq of named-ref,
statement STMT;,

STMT:: null-stint;

null_stint => ;

5.2 assignment statement

STMT:: assignment-..stint;

assignment~stint =>
target: REFERENCE,
source: EXP;

5.3 if statements

STMT:: if-stint;
if-stint =>

thenpart : thenSlause,
else-parts: ELSESOREMPTY;

then-clause =>
cond :EXP,
statements: seq of STMT;,

ELSESOREMPTY: elses...part I Empty;

elsespart =>
else-part: ELSECLAUSEOREMPTY,
elsifs :seq of elsif-clause;

elsif_clause =>
cond : EXP,
statements : seq of STMT,

ELSECLAUSEOREMPTY:: else-clause I Empty;

else_clause =>

statements: seq of STMT;

-- 5.4 case statements

STMT ::= case_stint;

Appendix C May I99 9

case-stint =>
alternatives :seq of altern,
case -exp :EXP;

altern =>
choices :seq of CHOICEOROTHERS,
statements :seq of STMT;

-5.5 loop statements

STMT :=loop stnn;

loop-stxnt =>
iterator ITERATOR,
label Symbol,
referencer : direct-.ref,
statements: seq of STMT;

ITERATOR:: while-iter,

while-iter =>
condition: EXP;

ITERATOR ::= for-jter;

for--iter =>
init_and~end : GENERALDISCRETE _RANGE,
referencers :seq of namecdref,
variable :Symbol;

ITERATOR ::= reversejiter;

reverse-iter =>
mnit-and-end: GENERAL_,,DISCRETE.RANGE,
referencers :seq of named-ref,
variable : Symbol;

-- 5.6 block statements

STMT ::= block;

block =>
declarations seq of DECL,
exception-handler : seq of altern,
label :Symbol,

Appffldix C May M99 10

referencer directjef,

statements :seq of STMT;,

-- 5.7 exit-statements

STMT :=exit-stnw

exit~stint =>
level :REFERENCE_OR_EMPTrY,
when-condition :EXPOREMPTY;,

REFERENCE _OREMPTY:: REFERENCE I Empty;

-- 5.8 return statements

STMT :=return -stint;
return-stint =>
value: EXP _OREMPTY;

-- 5.9 goto statements

STMT:: gotk_stint;
goto-stmt =>
target: REFERENCE;

-6 subprograms

-6.1 subprogram declarations

SINGLEDESIGNATOR~iTM::= func-spec;

func _spec =>
body :DIRECI'_REF _OREMPTY,
context seq of CONTEXTELEM,
designator : Symbol,
parameters : seq of FORMAL,
referencer : directjef,
returnjype : directjref;

SINGLEDESIGNAT ORITM::= poc-spec;

proc-spe =>
body :DIRECTr_REF_OREMPTY,
context seq of CONTEXT_-ELEM,
designator: Symbol,
parameters: seq of FORMAL,

Appendix C May 1992i

referencer : drcr

-6.1.C formal part

FORMAL ::= in-formal I out_formal I inout~formal;

in-formal =>
designators :seq of Symbol,
initialvalue: EXP _OREMPTY,
referencers : seq of nameCref,
type : SUBTYPE_INICATION;

FORMAL ::= out~formal;
out-formal =>
designators: seq of Symbol,
referencers : seq of named~ref,
type : SUBTYPE_INDICATIlON;

FORMAL ::= inout-formal;
GENERIC_-PARAMETER ::= inoutjformal;
inout~formal. =>
designators: seq of Symbol,
referencers :seq of namnedtref,
type : SUBTYPE _INDICATION;

-- 6.3 subprogram bodies

SINGLEDESIGNATORITM::= funcbdy;

funcj bdy =>
context :seq of CONTEXTELERM,
declarations :seq of DEOL,
designator :Symbol,
exception-handler: seq of altem,
parameters : seq of FORMAL,
referencer :direc...ref,
return-type :directjef,
spec :DIRECT _REF_OR_EMPTY,
statements : seq of STMT,

SINGLE_ DESIGNATORITM::= pocbdy;

procjxly =>
context :seq of CONTEXT_ELEM,
declarations :seq of DECL,
designator :Symbol,

Appendix C May 1992 12

exceptionhandler : seq of altem,
parameters : seq of FORMAL,
referencer : directuref,
spec : DIRECT_REFOREMPTY,
statements : seq of STMT;

-- 6.4 subprogram calls

STMT ::= procsall;

proccall =>
parameters: seq of EXP_ORASSOCIATION,
proc : REFERENCE;

EXP ::= function-call;

function_call =>
function : REFERENCE,
parameters : seq of EXP_ORASSOCIATION;

-- 7 packages

-- 7.1 package structure

SINGLEDESIGNATORITEM ::= pkg_.spec;

pkg-spec =>
body DIRECTREF_OREMfY,
context seq of CONTEXTELEM,
declarations : seq of DECL,
designator : Symbol,
private-declarations : seq of DECL,
referencer : directref;

SINGLE_DESIGNATORITEM ::= pkgjbdy;

pkgbdy =>
context : seq of CONTEXTELEM,
declarations : seq of DECL,
designator : Symbol,
exception-handler : seq of altern,
referencer : direct-ref,
spec : DIRECTREFOR_EMPTY,
statements : seq of STMT;

Appendix C May 1992 13

-- 7.4 private type and deferred constant declarations

MULTIPLEDESIGNATORSITEM:: deferred-consi-dccl;

deferred-const-decl =>
decl :const-dccl,
designators: seq of Symbol,
referencers : seq of named-ref,
type :SUBTPEINDICATION;

-8 visibility rules

-8.4 use clauses

DECL ::= useelem;
CONTEXTELEM:: use-elem;

use-elemn =>

items : seq of Symbol;

-8.5 renaming declarations

MULTIPLEDESIGNATORS-iTM: exception-rename;

exception_rename =>
designators: seq of Symbol,
item :REFERENCE;

SINGLE_DESIGNATORITEM ::= func~yename,

func-rename =>
designator : Symbol,
item : REFERENCE,
parameters : seq of FORMAL,
referencer : directzjef,
return_type : direct..ref;

MULTIPLEDESIGNATORSITM::= object-rename;

object-rename =>
designators : seq of Symbol,

item : REFERENCE;

SINGLEDESIGNATORITM::= pkgjrename;

pkgjename =>

Appendix C may1992 14

designator: Symbol,
item : REFERENCE,
referencer : direc...ef;,

SINGL.EDESIGNATORJITEM ::= proc-rename;

proc-rename =>
designator: Symbol,
item : REFERENCE,
parameters : seq of FORMAL,
referencer : direct...ef;,

-9 tasks

-9.1 task specifications and task bodies

SINGLDESIGNATORITM::= task-type-4ecl;

taskjtype_decI =>
designator: Symbol,
referencer : directjef,
spec : DIRECTREF_-OREMPTY;

SINGLEDESIGNATORITEM ::= task-spec;
TYPEINFO :=task-spec;
task...spec =>

body :DIRECT_REF_OR_EMPTrY,
context :seq of CONTEXT_-ELEM,
declarations: seq of DECL,
designator :Symbol,
referencer :direct-ref;,

SINGLEDESIGNATORITM::= taskjbdy;

task -bdy =>
context :seq of CONTEXTELEM,
declarations :seq of DECL,
designator :Symbol,
exception-handler: seq of altern,
referencer : direct..ef,
spec :DIRECTREFOREMPTrY,
statements : seq of STMT,

-- 9.5 entries, entry calls and accept statements

Appendix C May 1992 is

SINGLEDESIGNATORITEM ::= entry;

entry =>
designator: Symbol,
parameters : seq of FORMAL,
range : RANGEOREMPTY,
referencer : directLref;

RANGEOREMPTY ::= RANGE I Empty;

entryscall =>
entry : directref,
index : EXP_OREMPTY,
parameters: seq of EXP_ORASSOCIATION;

STMT ::= accept;
accept =>

entry : REFERENCE,
index : EXP_OR_EMPTY,
parameters: seq of FORMAL,
referencer : directref,
statements: seq of STMT;

-- 9.6 delay statements, duration and time

delay =>
exp : EXP;

-- 9.7 select statements

-- 9.7.1 selective waits

select =>
select-clauses : seq of SELECTCLAUSEELEM,
statements : seq of STMT

SELECT_CLAUSEELEM ::= pragma I seleccclause;

select_clause =>
cond : EXP,
statements: seq of STMT;

STMT ::= terminate;

terminate =>;

Appendix C May 1992 16

-9.7.2 conditional entry calls

STMT ::= ENTRY...STMT;

ENTRYSTMT ::= condentry;

cond~entry =>
failure-statements : seq of STMT,
success,.statemients : seq of STMT;

-9.7.3 timed entry calls

ENTRY_-STMT:: timed-entry;

timed_entry =>
failure-statements : seq of STMT,
success-statements : seq of STMT;

-9.10 abort statements

STMT ::= abort;

abort =>

tasks: seq of REFERENCE;

-10 program structure and compilation issues

-10.1 compilation units - library units

UNrTDECL ::= GENERICINSTANTIATION ACTUALSPEC ACrUAL.,BODY;

ACTUAL_,SPEC::
func_spec I
func;_instantiation I
genericjfunc-spec I
geneicpkg-spec I
geneic-proc-spec I
pkg..spec I
pkgjinstantiation I
pkg..spec I
proc-Specl
procjinstantiation I
task-spec;

ACTUALBODY

funcpbdy I

Appendix C May 1992 17

func-instantiation..bdy I
genenicJuncibdy I
generic...pkgibdy I
generic-procibdy I
pkg..bdy I
pkgjinstantiation bdylI
procjbdy I
proc-instantiationbdy I
task-bdy;

CONTEXTELEM with-elem;
--CONTEXT_ELEM :=useeem;

with-elem =>
items: seq of Symbol;

-10.2 subunits of compilation units

SINGLEDESIGNATORITEM ::= stub;

stub =>
designator: Symbol,
referencer : direcLref,
spec -DIRECTREF_-OREM1 7rY,
subunit : DIRECT _REF _OREMPTrY,

SINGLEDESIGNATORITM::= subunit;

subunit =>
body : DIRECTREFOREMPTY,
designator: Symbol,
referencer : direct-..ref,
spec :DIRECT_-REFOREMPTY,
stub :DIRECT_REF _OREMPTY;

*11 exceptions

-11.1 exception declarations

MULTIPLEDESIGNATORSITMM::= exceptionjecl;

exception-deci =>
designators: seq of Symbol,
referencers : seq of named-ref;

Appendix C may 199 is

-11.2 exception handlers

-11.3 raise statements

STMT ::= raise-stint;

raise-stint =>

exception : namnedref;

-12 generic program units

GENERICUNIT: genericjfunc-spec I generic-.proc-spec I
generic-func-bdy I generic...proc-bdy I
generic...pkg-spec;

GENERICPARAMETER ::= generic-type-parain I
injformal I
inout~formal I
GENERIC_SUBPROGRAMPARAM;

SINGLEDESIGNAT ORITEM ::= genericjtype-param;

genenicjype-param =>
designator: Symbol,
info : GENERICTYPEJINFO,
referencer : direct-ref;

GENERIC_TYPE_INFO 0 genericjlfiscrete-info I generic-integerjinfo I
generic float-info I generic_fixedinfo I
TYPEINFO;

genericjffiscrete_info =>;
genericjintegerjnfo =>;
genericjfloatjinfo =>;
generic jixed_info =>;

GENERICSUBPROGRAMPARAM ::= generic-func-paramlI generic...proc-param;

genericjfunc-paramn =>
default-subprogram: SYMBOLBOXSUBPROGRAMOREMPTY,
designator : Symbol,

parameters :seq of FORMAL,
referencer :direct-ref,
return jype :direct-ref;,

Appendix C may 199 19

genenic-proc-param =
default-subprogram: SYMBOL_ BOXSUBPROGRAMLOREMPTY,
designator Symbol,
parameters :seq of FORMAL,
referencer direct-ref;

SYMBOL_ BOXSUBPROGRAMOREMPTY:: box-subprogramn I Empty I Sym-

bol;

box-subprogram >

SINGLELDESIGNATOR_ITEM:: generic funcspec;

geneicjuncspec =>
body DIRECT_REF__OREMPT Y,
context seq of CONTEXTELEM,
designator :Symbol,
g-parameters: seq of GENERICPARAMETER,
parameters :seq of FORMAL,
referencer :direct..ref,
return-type :directjref,

SINGLEDESIGNATORITM: generic-proc-spec;

generic-proc-spec =>
body DIRECTREFOR_EMPTY,
context seq of CONTEXT _ELEM,
designator :Symbol,
g-parameters :seq of GENERIC _PARAMETER,
parameters :seq of FORMAL,
referencer :direcuref;

SINGLEDESIGNATORITEM :=generic-pkg..spec;

generic.pkg..spec =>
body DIRECT_REF_OREMPTY,
context seq of CONTEXL-ELEM,
declarations seq of DECL,
designator Symbol,
g-paraneters :seq of GENERIC_PARAMETER,
private~declarations :seq of DECL,
referencer :directuef;

rw ~ SINGLE_DESIGNATOR_ITEM:: genericjuncbdy;

generic-func-bdy =>

Appendi C May 1992 20

context seq of CONTEXTELEM,
declarations seq of DECL,
designator : Symbol,
exceptionhandler: seq of altem,
g_parameters : seq of GENERICPARAMETER,
parameters : seq of FORMAL,
referencer directjref,
returntype : direct-ref,
spec : DIRECTREFOREMPTY,
statements : seq of STMT;

SINGLEDESIGNATORITEM ::= generic-proc bdy;

generic_procjbdy =>
context : seq of CONTEXTELEM,
declarations seq of DECL,
designator : Symbol,
exceptionhandler: seq of altem,
g-parameters : seq of GENERICPARAMETER,
parameters : seq of FORMAL,
referencer : direct-ref,
spec : DIRECTREFOREMPTY,
statements : seq of STMT;

SINGLEDESIGNATORITEM ::= generic-pkgjbdy;

generic-pkg-bdy =>
context : seq of CONTEXTELEM,
declarations : seq of DECL,
designator : Symbol,
exceptionhandler: seq of altem,
referencer : directref,
spec : DIRECTREFOREMPTY,
statements : seq of STMT;

-- 12.3 generic instantiation

GENERICACTUALPARAMETER:= EXP; -- for now

SINGLE_DESIGNATOR_ITEM ::= funcinstantiation;
GENERICINSTANTIATION ::= funcinstantiation;

funcinstantiation =>
body : DIRECT_REFOREMPTY,
context : seq of CONTEXTELEM,
designator : Symbol,

Appendix C May 1992 21

g-actuals : seq of GENERIC_ACTUAL_PARAMETER,
instanceof: REFERENCE,
parameters : seq of FORMAL,
referencer : direct-ref,
return_type : direcLref,
spec : DIRECT_REF_OR_EMPTY;

SINGLEDESIGNATORTEM ::= proc_instantiation;
GENERICINSTANTIATION ::= proc-instantiation;

proc.instantiation =>
body : DIRECTREFOREMPTY,
context : seq of CONTEXTELEM,
designator : Symbol,
g-actuals : seq of GENERICACTUAL_PARAMETER,
instanceof: REFERENCE,
parameters : seq of FORMAL,
referencer direct-ref,
spec : DIRECTREF_OREMPTY;

SINGLEDESIGNATORITEM ::= pkgjinstantiation;
GENERIC_INSTANTIATION ::= pkgjinstantiation;

pkg-instantiation =>
body : DIRECT_REF_OR_EMPTY,
context : seq of CONTEXTELEM,
designator • Symbol,
g-actuals : seq of GENERICACTUAL_PARAMETER,
instanceof: REFERENCE,
referencer : directtef,
spec : DIRECT_REF_OR_EMPTY,

SINGLE_DESIGNATOR_ITEM::= funcinstantiationbdy;
GENERICINSTANTIATION ::= funcinstantiationibdy;
funcinstantiationbdy =>

context • seq of CONTEXTELEM,
declarations : seq of DECL,
designator Symbol,
exceptionhandler: seq of altem,
g-actuals : seq of GENERICACTUALPARAMETER,
instance_of : REFERENCE,
referencer : directref,
spec : DIRECT_REFOR_EMPY,
statements : seq of STMT;

SINGLEDESIGNATORITEM ::= proc instantiationbdy;

GENERICINSTANTIATION ::= proc-instantiationjbdy;

Appendix C May 1992 22

proclnstantiatiot..bdy =>
context seq of CONTEXTELEM,
declarations seq of DECL,
designator Symbol,
exception_handler : seq of altem,
g-actuals :seq of GENERICACTUALPARAMETER,
instance-of :REFERENCE,
referencer :directjref,
spec DIRECT_ REF _OR_EMPTY,
statements :seq of STMT

SINGLDESIGNATORITEM:: pkgjnstantiation bdy;
GENERIC-INSTANTIATION ::= pkgjinstantiation-bdy;

pkglnstantiation..bdy =>
context seq of CONTEXT_-ELEM,
declarations seq of DECL,
designator Symbol,
exception-handler: seq of altern,
g-actuals : seq of GENERICACTUAL._PARAMETER,
instance_of : REFERENCE,
referencer :direct-ref,
spec DIRECT_REF _OREMPTY,
statements :seq of STMT;

-13 representation clauses and implementation dependent features

-13.1 representation clauses

REP ::= record_rep I EXPREP;

type-attribute =>
designator :Symbol,
representations: seq of REP,
type : directref;

(ADL EXPREP => exp EXP)

(ADL EXPREP := address-ep length-clause enumeration...rep)-- 13.3

-- 13.2 length clauses

EXP _REP ::= length...clause;
length~clause =>

cxp : EXP, -- exp is a simple expression

Appendix C May 1992 23

target: REFERENCEOR_TYPE_ATRIBUTE;

13.3 enumeration representation clauses

EXPREP ::= enumeration-rep;
enumeration-rep =>

exp : EXP, -- exp is an aggregate
target: REFERENCEORTYPEATTRIBUTE;

13.4 record representation clauses

ALIGNMENTOREMPTY ::= alignment I Empty;
alignment =>
at-mod : EXPOREMPTY,
pragmas: seq of pragma;

REP ::= record-rep;
record rep =>

alignment : ALIGNMENTOREMPTY,
componenLreps : seq of COMPONENTREPELEMENT,
target : REFERENCEORTYPE_ATTRIBUTE;

COMPONENTREPELEMENT ::= component-rep I pragma;

componentrep =>
aLexp : EXP,
designator: Symbol,
range : RANGE;

-- 13.5 address clauses

EXP-REP ::= addressjrep;
address-rep =>

exp : EXP,
target: REFERENCEOR_TYPE_ATIRIBUTE;

REFERENCEORTYPEATTRIBUTE ::= REFERENCE I type-attribute;

type-attribute =>
designator : Symbol,
representations: seq of REP,
type : direct-ref;

-- 13.8 machine code insertions

machinecode =>

Appendix C May 1992 24

exp :EXP,
type: REFERENCE;

-14 input-output

-X.1 Constraints

CONSTRAINT:: RANGE _CONSTRAINT I amry-sonstraint I Empty;
RANGE_-CONSTRAINT ::= EXP I RANGE;

array-constraint =>
element-constraints : seq of CONSTRAINT,
ranges _onstraints : seq of RANGE;

-- X.1 References

REFERENCE ::= directjref named_ref indexedtref
component-ref object-ref pointer deref)

REFERENCE ::= direct~ref;

directuef =>
representations: seq of REP,
target : DECL_ORSTMT;, -- points to single decis

DECL _OR_STMT ::= DECL I STMT;

REFERENCE ::= object-ref;

object-ref =>
representations: seq of REP,
target : EXP;

REFERENCE :=named-ref;

named-ref =>
designator :Symbol,
representations: seq of REP,
target : REFERENCE;

REFERENCE ::= pointer~deref;

pointer-deref => -- the ".all" construct
representations: seq of REP,
target :REFERENCE;

Appendix C May 1992 25

EXPORASSOCIATION::= association;
ACTUALCOMPONENT ::= association;
association =>
names: seq of EXP,
value: EXP;

GENERAL_DISCRETERANGE::= constrained_reference;
SUBTYPE INDICATION constrainedreference;

constrained_reference =>
constraint: CONSTRAINT,
target : REFERENCE;

unconstrained =>
basetype: SUBTYPEINDICATION;

end module;

Appendix C may 199 26

Appendix D

Introduction to ENCORE Symbol Table

Introduction to the ENCORE Symbol Table

1. The Purpose of the ENCORE Symbol Table
The purpose of the ENCORE Symbol Table is to allow the various tools in ENCORE to

access definitions in Ada programs within the context of particular scopes.

Some goals in the symbol table design were:

1. The symbol table should be incrementally updatable. One should be able to add,
remove, or replace symbol table entries at any time, not just when the program is being
read in initially.

2. From any point in any scope of the program, the symbol table should appear logically
the same as if one were processing the Ada code at that point in the program.

3. Any tool that works on the IRep should be able to access the symbol table.

4. More than one tool should be able to access the symbol table simultaneously, even
within multiple scopes.

1.1 Basic Definitions

Symbol tables are used to store information that can be referenced from more than one
point in a program. Each item of information in a symbol table consists of two parts, a
'key,' which gives a name to the item, and a 'value,' which gives the actual information.
Adding the item with key 'k' and value 'v' to a symbol table is called storing the value 'v'
under the key 'k.'

Some of symbol table terminology has been used with slightly different meanings in the
current literature. This report will adopt the following meanings for the common symbol
table terms.

1. The phrase 'the symbol table' means the entire symbol table structure associated with a
particular Ada program.

2. The non-specific term 'symbol table' will denote a table of key/value pairs. The keys
will correspond to identifiers or characters in Ada, while the values will correspond to
definitions in Ada. For flexibility in modifying Ada programs, the values will be refer-
ences (nodes of type kDIRECTREF or k_NAMED_REF) rather than actual defini-
tions.

3. The term 'scope' will mean a symbol table associated with a segment of a particular
Ada program unit. Thus, a scope could hold information about a specification, a private
part, or a body.

4. A 'search' is an object that is used for accessing symbol tables. A search object
includes all the local and nesting information necessary for searching through the sym-
bol table for an Ada program.

5. The 'base table' of a search object indicates the scope in which searching will start.

Appendix D May 1992 1

6. Since there can be several entries with the same key in the symbol table for an Ada pro-
gram, it is necessary to keep track of which entries have been found and which are left
to search. The 'search cursor' keeps track of this information.

7. One is said to be 'in' a particular scope if the base table of the search object corre-
sponds to that particular scope.

1.2 A Simplified View of the Symbol Table

The various symbol table packages offer the progranmer a great deal of power and flexi-
bility; however, most programmers of ENCORE tools will only be interested in a rela-
tively small set of operations. These include:

* determining the current scope,

" creating a new scope within a given scope,

* entering a previously created scope,

" leaving a given scope (returning to the parent scope),

" entering the scope associated with a given declaration,

" retrieving the local entry (or entries) associated with a given key in a given scope, and

" retrieving the entry (or entries) associated with a given key, visible in the given scope
(i.e., those entries that are either in the local scope, in any of the parent scopes, or made
visible via 'with' or 'use' clauses).

" adding an entry to a given scope,

* removing an entry from a given scope,

" replacing an entry in a given scope with another entry,

These operations are provided in the package ParserSymbolTable. The next sections
discuss them in more detail.

1.3 Determining the Current Scope

The routine

function Current_Scope return SymbolTable;

returns the current table under consideration.

1.4 Creating a New Scope

To create a new scope, the programmer invokes the following routine:

procedure NewScope(name);

Appendix D May 1992 2

where 'name' is the name of the Ada program unit with which the new scope is to be asso-
ciated. This procedure creates a symbol table with the given name and assigns the current
scope as the parent table of the new table. It then enters the newly created scope. For
example, suppose procedure P contains a subprocedure P1, Suppose one is currently in the
scope of P. In order to create the symbol table for P1, one would call NewScope with the
designator of P1 as the parameter. This would create a symbol table for Pl, the would
place the search cursor in the scope of this new table.

1.5 Changing the Current Scope

In addition to the New-Scope routine, there are three routines for entering a previously
defined scope. These are

procedure Enter Scope(k);
procedure Leave-Scope;
procedure EnterAssociatedScope(n);

The procedure Enter-Scope is used for entering a previously defined subscope of the cur-
rent scope. In this procedure 'k' is the name of the scope being entered. This routine sim-
ply enters the given scope.

The procedure Leave-Scope simply enters the parent scope of the current scope; thus, a
call to Enter-Scope, followed by a call to LeaveScope, will result in the current scope
being the original scope.

The procedure EnterAssociatedScope is used for entering the scope associated with a
given Ada program unit. The parameter 'n' is not a symbol key but, rather, an AdaTran
node that corresponds to a particular Ada program unit. The function EnterAssociated_-
Scope allows the user to go directly to a given scope, without having to go up and down a
tree of nested scopes. One example where this is important is searching through the 'used'
units of a given scope.

For example, suppose one wishes to enter the scope of a particular compilation unit. The
parameter 'n corresponds to the unit with which the scope is associated.

1.6 Retrieving Symbol Table Entries

Logically, retrieval of symbol table entries should follow the visibility rules of Ada. This
means that the retrieval process generally should first search through the local scope, then
the parent scopes (in order), the through the 'with'-ed units, then through the scopes of the
'used'-units. Furthermore, there are times when a tool may wish to look just at entries in
the local segment of the current unit (for example just in the 'body', the 'private' part, or
the 'specification'). At other times a given tool may be interested in searching through all
parts of the current scope but not in searching through any of the parent scopes.

Appendix D May 1992 3

In Ada there can be more than one declaration with a given key visible at a given point in
the program. This is the case, for example, with overloaded subprograms. In order to deal
with multiple visible declarations with the same name, we have introduced the notion of a
'search cursor' that keeps track of the current position in a particular search through a
symbol table. Most of the retrieval routines will have both a 'First_' and a 'Next_' ver-
sion. The function whose name starts with 'First' will find the first definition correspond-
ing to a given key, starting with the given table. The function whose name starts with
'Next_' will find the first definitions corresponding to the given key, past the cursor posi-
tion of the last retrieval.

One final note. The functions for retrieving entries all use the parameter 'k,' which repre-
sents the search key. The type of 'k' has not been specified. This is because these functions
are all overloaded with respect to 'k,' with 'k' being an AdaTran_Node in the one case and
'k' being a Symbol in the other case. In the case where 'k' is an AdaTanNode, 'k' must
be of type kSymbol or kCharacter. This is to allow enumeration literals, some of which
can be characters, to be entered in the symbol table. Since most keys will be symbols, and
since many tools will deal exclusively with keys that are symbols, it is useful to overload
the retrieval functions to allow symbols themselves, rather than just symbol nodes, as
keys.

1.7 The General Search Process

The general search process is to search for all visible definitions corresponding to a given
key. This facility is provided by the functions

function Get_FirstEntry(k) return AdaTranNode;
function GetNextEntry(k) return AdaTranNode;

The function GetFirstEntry finds the first entry with key 'k' visible in the current scope,
while GetNext_Entry finds the first visible entry with the given key past the current
search cursor position. The functions GetFirst_Entry and Get_Next_Entry will both
search through all definitions visible from the given table, whether in the local scope, par-
ent scopes, 'with'-ed units, or 'used'-units.

1.8 The Local Search Process

To search locally in a given scope segment, such as a specification, a body, or a private
part, one uses the functions.

function GetFirstLocalEntry(k) return AdaTranNode.
function GetNextLocalEntry(k) return AdaTran_Node.

These work similarly to GetFirstEntry and GetNextEntry, except that the search
never goes beyond the current segment.

Appendix D May 1992 4

1.9 The Unit Search Process

There are times when the user wishes to limit searching to the various segments of an Ada
unit. For example, one might begin a search in the body of a package and be only inter-
ested in those definitions that occur in the body, private part, and specification. This facil-
ity is provided by the functions

function GetFirstUnitEntry(k) return AdaTran_Node;
function Get_Next_UnitEntry(k) return AdaTranNode;

1.10 Modifying a Symbol Table

The basic routines for modifying a symbol table are

procedure AddEntry(k, value);
procedure RemoveEntry(k, value);
procedure ReplaceEntry(k, old-node, new-node);

These three routines only affect the current scope.

The procedure AddEntry simply adds the entry whose key is given by the parameter 'k'
and whose value is given by the parameter 'value' to the current scope. The procedure
RemoveEntry deletes the entry with key 'k' and value 'value' from the current scope.
Finally, the procedure Replace-Entry substitutes the value given by 'newnode' for that
given by 'old-node,' under the key given by 'k.'

2. The Underlying Symbol Table Mechanism

A complete discussion of the symbol table mechanism, in all its generality, is beyond it

scope of this report. This section merely points out some of the novel features of the sym-
bol table mechanism.

2.1 The Building Blocks for the Symbol Table Mechanism

The following Ada packages make up the symbol table mechanism:

Associations
Low_LevelSymbolTableDefinitions
SymbolTableFunctions
SearchFunctions

2.2 The Low Level Packages.

The packages Associations and LowLevel_Symbol_Table_Definitions provide the basic
definitions used by all the other symbol table packages. In particular, they provide the def-
initions for the data types 'SymbolTable' and 'Search,' which are basic to all the other
packages.

Appendix D May 1992 5

2.3 The Package 'SymbolTable Functions'

The package SymbolTableFunctions provides facilities for

" creating new symbol tables,

" associating symbol tables with program units,

• associating symbol tables with their parent and descendant tables, and

* associating symbol tables with their corresponding 'with' and 'use' clauses.

2.4 The Package 'Search-Functions'

The package SearchFunctions forms the heart of the symbol table mechanism. It pro-
vides the mechanism for setting up and manipulating a 'search, on the symbol table for a
given Ada program. This includes facilities for

" creating new searches,

* setting the base (or starting) table for a search,

* setting the mode (LOCAL, GLOBAL, etc.) of a search,

" handling the nesting mechanism for a search,

* setting the search key for a search,

" retrieving symbol table entries associated with a given search,

• adding, removing, and replacing entries in the base table of a given search,

Note that the word 'search' in this context refers to the actual Ada data type 'search,'
which is a type of data object set up to support multiple searches through the symbol table
of an Ada program.

One final remark. Most tool builders will not use the packages Symbol_Table_Functions
and SearchFunctions directly. Instead, they will use these packages via a simplified inter-
face, such as that provided by the package ParserSymbolTable.

Appendix D May 1992 6

Appendix E

SRE/ESL Internal Representation

ELEMENTARY STATEMENT LANGUAGE
INTERNAL REPRESENTATION

MEMO 2 (REVISED)
January 29,1992

NAVSWC CONTRACT NO. N60921-90-C-0298

Deliverable Item #0003 - A003

COMPUTER COMMAND AND CONTROL COMPANY
2300 CHESTNUT STREET STREET

PHILADELPHIA, PA 19103

Copyright (0) 1991 Computer Command and Control Company, as an unpublished work.

The contents of this document constitute valuable trade secrets, unpublished works protected
by copyright, and other confidential and proprietary Information; all rights reserved.

Used by p. r nission Consputer Ccanmand and Concl Campan). Arni 23, 1"2

/
/

Elementary Statement Languaga Memo 2

TABLE OF CONTENTS
1. INTRODUCTION 1
2. DATA STRUCTURE OF STATEMENT AND

EXPRESSION NODE IN THE PROGRAM TREE.. 1
2.1. DATA STRUCTURE OF THE PROGRAM TREE

STATEMEN NODES 1

2.1.4. ENCODEI AND ENCODE2 4
2.1.5. STRUCTURE POINTERS 5
2.1.6. LABELPOINTER 5
2.1.7. EXPRESSION POINTERS $
2.2. DATA STRUCTURE OF EXPRESSION NODES 6
2.2.1. EXPRESSION TYPE 7
2.2.2. POINTERS TO BROTHER EXPRESSION 7
2.2.3. NUMBER OF DESCENDANTS 7
2.2.4. POINTERS TO DESCENDANTS 8
2.2.5. NUMBER OF CHARACTERS IN STRING 8
2.2.6. STRING 8

3. EXECUTABLE STATEMENTS 9
3.1. CONDITIONAL BLOCK 10
3.2. LOOP BLOCK 11

3.3. ASSIGNMENT STATEMENT 12
3.4. PROCEDURE CALL 12
3.5. MESSAGE STATEMENTS 13
3.6. INPUT/OUTPUT 13
3.7. INPUT/OUTPUT AUXILIARY STATEMENT 13
3.8 CONTEXT STATEMENTS 13
3.9 CONTROL TRANSFER 14
4. DECLARATION STATEMENTS 16
4.1 PROGRAM TYPE 17
4.2 STRUCTURE TYPE 17
4.3 VARIABLE TYPE 18
4.4 PROGRAM UNIT 18
4.5 STRUCTURE DECLARATION 20
4.6 VARIABLE 21
4.7 FILE ... 21

4.8 COMMENT DECLARATION 21
5. EXPRESSION NODES 22
5.1 TYPES OF EXPRESSION NODES 22
5.2 FIELDS IN EACH EXPRESSION NODE 23
5.3 TREE CONSTRUCTION EXAMPLES 31
APPENDIX: ESL STATEMENT CODE 39

Prepared Under Contract No. N60921-90-C-0298

Und by PL rnisasio O Compute! Cam~ d and Ccwiol Company, Arpn 23. 192

/
Elementary Statement Languages Memo 2

1. INTRODUCTION

This memo describes the program tree for storing Elementary Statement Language (ESL)
programs in a tree structure in memory. Block statements are nodes that have branches which
fan-out to their constituent statements. Terminal statement form the leaves of the tree. Each
statement is also the root of a subtree of expression nodes that contain the arguments of the
statement. This memo consists of four sections. Section 2 discusses the statement and
expression node structures. Section 3 describes the structure for storing executable statements.
Section 4 describes the node structure for storing ESL declaration statements. Section 5
discusses the expression nodes structure. The ESL tree is used as an intermediary in translation
of source real-time programming languages into Ada. A source language program is translated
first to ESL. ESL has semantics similar to those of Ada. However, the ESL tree is reorganized
and modified prior to translation to Ada.

2. DATA STRUCTURE OF STATEMENT AND EXPRESSION NODE IN THE
PROGRAM TREE

2.1. DATA STRUCTURE OF THE PROGRAM TREE STATEMENT NODES

This subsection describes the node structure of statements. The statement node structure is
shown 'below in MODEL, C, and Ada in a structure of type node.

Prepared Under Contract No. N60921-90-C-0298

Usd by p. rmision o Computer Command and Ckmuol Com ny; Airl 23.1992

Elementary Statement Language: Memo 2

I nods Is type accessed by Nodetc,
3 language Is fld(char 1), /*Z3l. 3381.S/

3 *tat type Is ld (bin Lix), /**tat type*/i
3 stat" mmIs ld (bin fix), /**tat I~d nmbr-/
3 aux 'is Lld(access) Auulodeltr, /*attribute field for future use*/i
3 encodel Is Ld (char 1), i'ermoode statement pointers*/
3 %ncode2 Is fld(cbar 1). *encode expression pointers*i
3 father is fld(access) Hodeltr, /*Liindiate ancestor*i
3 pbrotber is ld (access) Nodltc, iprev~ious sibling stnt*/
3 nbrother is fld(access) Nodetc, /next sibling satti
3 t son is fld(access) NodePtr, /*then son*,
3 " on Is fLd (access) NodePtr, /*else son*/
3 isbelpointer Is field(access) Wflodeltr,
3 exO Is fld(access) EZP~odePtr,
3 exi is Lid (access) muIodeltc,
3 ex2 is fid(acoeas) EXPNodePtr:

typedf int stat kind,
typedef char languzages;

stzuct _Nods I
languages lan~guage;
&tat kind stat -type;
char7 sta Su(I:i tatement sequence number in the program S

/* It takes 8 character positions ~
struct -Asxode 'aux: /* attribute node for future use 5

char encodel, encoda2;
/* encodel encodes the 3 structure pointers ~
/* oncode2 encodes the 3 expression Pointers*/

struct Nods *father; /S the father statement */
struct Node *pbrotber; /S the previous sibling statemet *
struct Node *nbrothet; /5 the next sibling statement, */

strut -Ode *t-on;/S the first statement of the S

/* block If the current node represents a S

/* compound statement. If It In an 5

/* 'if-then-eolse', It points to the first S

/* statement of the *then' block. 5
struct -Nods *m-son:

/* the first statemeont of the '
/*' else' block If It Is an 'If-then-else'I
/* statement and If there Is am 'else',5
/* block, 'NVLL otherwise.

struct ixpeode *labelpointer:
struct _Ezpoode *exO, *exl, *ezi;

TYPE NODE is RECORD
L3NOU~AE: RPLZ;
STNT TYPEZ: INTGRn:
SYT NUNm: INTEGE;
AUX: ALUmIODUTR:
ENCODRl: CHAMC!U;
ZNCOD22: CENRACTXR;
FATtER: NODENYR:
PIBROTMIE: UOEPYR;
NEROTUE: NOOEPTR;
I SON: NODEPTE;
z330W: noDEPU;
LZME POI~NER: 3EPNODEPTR:
310: 3XPN0DWP'th:
Efl: RIINODlwR;
312, ZXNNODTR;

END RECCUD;

Prepared Under Contract No. N60921-90-C-0298 2

Uned by pL rmissian of Carnpmn Can~Ad and Coisr Campeny. Apii 23.19IM

//

Elementary Statement Languages Memo 2

This structure is graphically described as follows:

language

stint-type

stint-n-

aux

encodel

encoda2

5 structure pointers

label pointer

3 ezpression pointers

Three expression pointers exO, exl, and ex2 are used to store statement arguments in
expression nodes. The fields of the statement structure are as follows:

2.1.1. LANGUAGE

This field is reserved for temporary and future use to denote the translation from a source
language to a version of ESL It indicates the need to reorder the programs and to use
procedures that correspond to source program special functions and operating system calls. This
must be done in the translation from ESL to Ada.

2.1.2. STATEMENT TYPE

Statement types are discussed in Section 3 for executable statements and in Section 4 for
declaration statements. The statement type are represented in this memo by symbolic names.
The statement types are listed in the tables in Section 3 and 4. The corresponding identification
number of each statement type is given in Appendix L

2.1.3. AUXILIARY

This field is reserved for temporary use in the processing of an ESL tree.

Prepared Under Contract No. N60921-90-C-0298 3

Utod by PC rmision G(Comptef Caelu and Caoe Conpmny. APri 23. I2

/
Elementary Statement Language / Memo 2

2.1.4. ENCODEI AND ENCODE2

Encodel and Encode2 are represented each by one character. Encodel encodes the
presence/absence of 4 structure pointers:

pbrother
nbrother
tvson
e-son

The presence/absence of each pointer above is a binary number in this order. The
presence/absence of the above four pointers is encoded by one of the following 16 characters:

0,1,2,3,4,5, 6,7, 8, 9,A,B,C,D,3,V

Since every statement (except the root) has a father pointer, the presence of the father
pointer is not encoded.

For instance, encodel = '7', corresponds to the binary number

0111

from the encoding rule, we find

pbrothez - null

nbrother I- null
tuPon / null
".on / null

Similarly, the character encode2 encodes use of four expression pointers:

labelpointer
exO
Oil
ez2

as one of the 16 characters:

0,1,2,3,4,5, 6,7,8,9,aA,C,D,,]

Encode 1 and Encode2 are also used to unload the program tree to a disk file in depth first
left to right order and to load back the disk file to memory and rebuild the tree.

Prepared Under Contract No. N60921-90-C-0298 4

Usd by pcrusnsion d cmpr Commo ad Caoml Ccpmny; Api 23. M9

Elementary Statement Languages Memo 2

2.1.5. STRUCTURE POINTERS

A statement is graphically portrayed as having five pointers to its neighbors, if any.

father

pbrother nbrother

t-son 0 son

2.1.6. LABEL POINTER

This field contains the pointer to a label expression, if any. Its presence is included in
encode2.

2.1.7. EXPRESSION POINTERS

There may be as many as three main expressions representing the arguments of each
statement. The existence of such expressions is coded in encode2. Each expression may consist
of further subexpressions, as discussed further.

Prepared Under Contract No. N60921-90-C-0298 .

UVd by px muislim d Comtwt Convd Wn Cw Compa"W; APOi 23.1992

/
/

Elementary Statement Languaga Memo 2

2.2. DATA STRUCTURE OF EXPRESSION NODES

An expressions node has a structure of type expnode. Following is the definition of the

structure in MODEL, C. and Ada:

1 ezpnods is type accessed by Ezpnod&Ptr,
3 ezp type is fld(bin fix),
3 nb is fld(bin fiz),
3 nbrother is fld(access) EzpnodePtr,
3 no of dese is fld(bin fi),
3 point(3) is fld(access) EzpnodePtz,
3 noof char is fld(bin fix),
3 str value is fld(char (*)); /* variable length field */

typedef int ep kLnd; /* PIC '999' */

struct _Zxpnodel
exp kind ep_type; /* Numric code of the expression '1
int nb; /* Itis0ifnbrother is NOLL, 1 otherwise */

struct Expnode *nbrother; /* Pointer to next brother */

mt no of dose; /* Number of sons of current node */

struct Expnode *point[3]; /* Pointers to sons of this node */
int no of char; /* Length of str_value */

char strvalueCE4l;I* Variable length string value,up to 4046 */

TYPE EXPNODE(LEN_STR VALUE: integer:O)
IS RECORD

EXP TYPE: INTEGER;
NB: INTEGER;
NBROTRER: EXPNODEPTR;
NO OF DESC: INTEGER;
POINT: MWVCTOR(1..3);
NO OF CHAR: INTEGER;

STR VALUE: STRING(1.. LN_.STR VALUE);
END RECORD;

where

TYPE XXP_VZCTOR IS ARRAY(POSITIVE RANGE O>) OF EG'NOOEPTR;

Prepared Under Centrat No. N60921-90-C-0298 6

,$i ofd Cawrf C0_' " C_4,0 CwIy. AI I II9I

Elementwy Statement Languoer Memo 2

This structure is graphically described as follows:

no of donse

3 point

no_ofchar

str value

Each field of the structure expnode is explained in the following.

2.2.1. EXPRESSION TYPE

The field exp.type is an integer which identifies the type of the expression. The expression
types and respective numbers are given in Section 5.

2.2.2. POINTERS TO BROTHER EXPRESSION

The field nb records the presence (nb=l) / absence (nb=l) of next expression nbrother. This
enables creating a sequence of expressions. For instance, a function definition may have several
formal parameters.

satotype - VCaSP3C
exO -> functionnae
e*z -> paamtes pl, p2, p3
ez2 -> data type of return value

The structure of such a statement is:

021

P1 p2 p3null

2.2.3. NUMBER OF DESCENDANTS

The field noof_desc records the number of sons of the current node. When the node is a
terminal node, it has zero descendants.

Prepared Under Contract No. N60921-90-C-029 7 .

Vied by pCrm iss n of Co npftr C am n d ad C I Comanmy. Ap i 23. 192

Elementary Statemmnt Languages Memo 2

2.2.4. POINTERS TO DESCENDANTS

The field point is an array of pointers to son expression nodes. It is a three element array.

2.2.5. NUMBER OF CHARACTERS IN STRING

The string str_value has a variable length. The length (number of characters) of the
str_value field is recorded in this field. A value of 0 in this field indicates that the str.yalue field
of the expression node is not used.

2.2.6. STRING

This field str_value of the USAGE_EXPR (see Section 5 for expression types) is used to
store the function of some expressions as follows.

VALUE MEANING

COMMENT @C an inline comment.

DELTA @D precision of a fixed type.

ENUMER @E a list of enumerated data types.

INITIAL @I initial value.

LAYOUT @Y bit range of component.

LENGTH @L the length of a record in terms of bits.

NEW @N new instantiation of type or generic name.
PACKING @P word and byte information for a variable

packing clause.

RANGE @R range of a scalar.type.

Prepared Under Contret No. N60921-90-C-0298 ,

U9d by pc rmissim o CanirIt Cmm-d wd Cso Camp.y; Ai 23.1992

Elementary $ement Lanul / Me~2

3. EXECUTABLE STATEMENTS

The executable statements in ESL are listed in the following table.

STATEMENT TYPE STATEMENT SUBTYPE STMT TYPE NAME

1. Condition if-then-else IF_STAT

Block case CASESTAT

when WHENSTAT

2. Loop while WHILESTAT

Block until UNTILSTAT

for FORSTAT

3. Assignment assignment ASSIGNSTAT
Terminal

4. Procedure Call call CALLSTAT
Terminal raise exception RAISESTAT

5. Message send/receive message MSGCALL
Terminal accept message MSGACCEPT

6. Input/Output read READSTAT

Terminal write WRITE_STAT

7. 1/O Auxiliary open OPENFILE

Terminal close CLOSEFILE

__position POSITIONFILE

8. Context with WITH_STAT

Terminal use USESTAT

program-separate PACKSEP
PROCSEP
FCN..SEP
TASKSEP

separate SEPARATESTAT

pragnma PRAGMA

9. Control Transfer return RETURN STAT

Terminal go-to* GOTO

exit* EXIT

null* NULL
* Statements eliminated in later processing of ESL.

The expressions used with each statement type are discussed below.

Prepared Under Contract No. N60921-90-C-0298 9

Used by pc rmission o Co mpter Comnud and Control Compny. Aprl 2.1992

Elementary Statement Languages Memo 2

3.1. CONDITIONAL BLOCK

A conditional block can be of types IF_STAT, CASESTAT and WHENSTAT.

IF..STAT statements represents:

IF <condition> THEN <statementsl>;
{ELSE Ctatements2>)

<condition> is a Boolean expression. The ESL statement format is:

stmt type - IF STAT;
exO -> <condition>;
t-son -> <statementsl>;
*_son -> <statements2>, if any;

A CASE_STAT statement represents choice of one of several blocks <statementsl> ... ,
<statementsn> according to the values valuel, .. ., value n. The CASE statement contains
blocks of WHEN and ELSE statements. Each of these blocks contains the respective
<statementsi>:

The format of the CASE statement is:

stattype - CASZ .STAT;
ezO -> <expression>;
t son -> <first WHEN statemnt>
"-son -> <first statement under the ZLSE statement, if any>

The format of the WHEN statement is:

strut type = WHENSTAT
exo -> <valusi>;
t-son -> first of statementi;

The CASE statement tree representation is illustrated below.

Prepared Under Contrac No. N60921-90-C-0298 10

Uud by Fem.,isstan Of Crpnt Commuo and C-s-I Company. Aprd 23. 1992

Elementary Statement LanguagesI Memo 2

first of ELSE statement

inxO expression *zO exp~ression

t son t son

P/ /
first of <statemntsl> first of <statemnt2>

3.2. LOOP BLOCK

The loop statement has three forms: WHLESTAT, UNTIL..STAT, and FOR-STAT.

A WHEILSTAT statement represents:

WHILE <condition>

It is followed by descendants forming the loop body.

<condition> is a boolean expression.

The ESL format is:

stmnt -type - WHILESTAT;
ezO -> <condition>:
t-son -> first statement in loop body;

An UNTILSTAT statement represents:

DO UNTIL <condition>;

The ESL format is:

stmt -type - UNTIL STAT;
exO -> <condition>;
t-son -> first statmnt in loop body;

Prepared Under Contract No. N60921-90-C-0298

Und by pcrwvuijjaI d Ccxnpuwr Ccmman and Cnal Compuiy; April 23.19IM

Elemmntary Statement Languaga ,/ Memo 2

A FOP.,STAT statement represents:

rOR <loop variable> - MM <initial value> THU <final value>
[BY <step length>]

Its ESL format is:

strnt_type - rOR STAT;
ezO -> <loop variable>;
*xl -> <initial value>, <final value>, <step length>;
t_ion -> first statment in loop body;

3.3. ASSIGNMENT STATEMENT

An assignment always has a left hand side variable and a right hand side expression. It has
the ESL format:

stnt type - ASSIGN STAT;
ezO -> the left hand side variable(s);
ezi -> the might hand side expression;

3.4. PROCEDURE CALL

This statement represents regular as well as operating system calls. The source program
may call the operating system to provide certain services. Operating system calls in a source
language for input/output and task communication are represented by ESL statements in the
Input/Output (Section 3.5) and Message (section 3.6) categories described below respectively.
Other operating system calls are handled as this type of procedure call statement.

The ESL format for a procedure call is:

stmt type - CALL_..STAT;
e=0 -> name of the procedure;
exl -> list of parameters;

exl points to a list of parameter expressions. Each parameter expression consists of a parameter
name.

Operating system calls in a source language program perform a variety of functions which
may not have a direct equivalent in Ada. Their call name and parameters will be stored for later
analysis. Operating system calls for task messages and I/O are discussed separately below.

The ESL format for a RAISE statinent is:

strmt type - RAISE STAT
ezO -> nam of exception
example: RAISESTAT (ERROR);

Prepared Under Contract No. N60921-90-C-0298 12

Used by pcr miszan o Compir Cammvand and Ce Compuny; Ajwi 23, 1992

Elementary Statement Languages , Memo 2

3.5. MESSAGE STATEMENTS

These statements are used to indicate communications between tasks. There are two

statement types. MSG-CALL is used when the caller specifies the name of the other

communicating task. MSG_ACCEPT is used when the communication may involve unknown

other tasks. A communication must pair a MSGCALL in one task with a MSGACCEPT in

another task. Their ESL format is:

stat type - MSGCALL
exO -> name of a procedure used to interpret a message send/receive

operation of source program.
exi -> list of parameters with modes
ex2 -> a list of task and entry names

st*ttype - SGACCZEP
ez0 -> nam of a procedure used to interpret source program send/receive
exl -> list of parameters with nodes
ex2 -> entry names

3.6. INPUT/OUTPUT

Input/Output statements represent I/O activities in the source language or its operating
system. The ESL format provides for storing the operating system call name and its arguments
as follows:

stt type - PRAD STAT (for input) or
WITZ$_STAT (for output)

ezO -> nam of a procedure that interprets the operation of the source
language and operating system 1/O

ezl -> list of parameters
ez2 -> file.name, format

3.7. INPUT/OUTPUT AUXILIARY STATEMENT

There are three input/output auxiliary statements: OPEN-FILE, CLOSE_FILE, and

POSITIONFILE. They are stored as follows.

stmnt type - OPENrILZ, CLOSE rLE or POSITIO rI
ezO -> procedure name that interprets source program 1/O auxiliary

conmmands. Empty expression () if not applicable.
exl -> list of parameters
ex2 -> file name

3.8 CONTEXT STATEMENTS

These statements indicate that definition of a program entity is dependent on other
definitions or incomplete.

WITHSTAT and USESTAT refer to other packages. The format is

Prepared Under Contract No. N60921-90-C-0298 13

Used by permission o Cornpner Command and CmiM Company; AprI 23. 1992

//

Elementary Statement Langugn Memo 2

*tat type - WITR.STAT or US3 ST&T;
exO -> package nams for USESTAT

package and program unit nam for WITST T ;

PACKSEP, TASK-SEP, PROCSEP and FCNSEP are used to indicate that the body of
these program units (package, task, procedure or function, respectively) is provided elsewhere
and compilable separately in Ada. The format is:

stm _type - PA JSTAT, TASK SIP, PPOC SP or VOM .Sr

There are no arguments. This is a terminal statement with the respective program unit
specification as the parent.

The SEPARATE_STAT statement is used to indicate that the body of a program unit
follows, where the specification is in another package. The format is

stmt type - SEPARAT STT
xO - package name where unit specified

This is a terminal statement preceding the program unit body declaration.

The PRAGMA statement provides information used in the compilation. The format is:

stmt type - PRAGIA
ezO - pragma name
ez - list of attributes

3.9 CONTROL TRANSFER

A return statement returns the control from a called procedural or function to a calling
procedure or function. A return statement may include an expression for a returned value.

A return statement is stored as:

stmt type - RETURN STAT;
exO -> expression, if any;

The following three statements extend ESL: GOTO, EXIT, NULL These statements can
have one or more labels. They are eliminated in later processing of ESL. Each of these
statements is stored in a node statement structure, as a terminal ESL statements.

A Goto statement has its usual meaning.

0020 <label>

The format is:

stot type - GOTOSTAT;
ezO -> <label>
ext -> procedure or function name; if <label> is not in the scope of the

Iindate enclosing procedure or function.

Prepared Under Contract No. N60921-90-C-0298 14

Used by pcrissiOn O C nmFle COMM d and Cow Compsny; Api 23.1992

E£mentary Statenent Lan, a M/ ueMo 2

An EXIT statement nested in a loop transfers control to the statement following the end of a
nesting loop. If an EXIT does not have a label, the control always transfers to he end of the
immediate nesting loop. If an EXIT statement has a label, the control transfers to the end of the
labelled loop. The labelled loop must nest the EXIT statement.

The format is

stmt type - T;
exO -> <label>;

A NULL statement provides a holder for a statement label, as the destination of a GOTO
statement. A NULL statement format is:

stat type M NL;

Prepared Under Conftect No. N60921-90-C-0298 15

Used by pcrmissian d papuw COmum l CmMw Cempuy; Aprg 23. MW9

/
Elemantary Staement Langpug Memo 2

4. DECLARATION STATEMENTS

The table below summarizes the ESL declaration statements.

STATEMENT TYPE STATEMENT STATEMENT NAME
,SUBTYPE

1. Program Type: task TASK-TYPE

Block generic program PACK-GEN
PROCGEN
FCNGEN

2. Structure Type: record type RECORD-TYPE
Block

3. Variable Type: variable type VARIABLETYPE
Terminal

4. Program Unit: system SYSTEM

Block program file PROGRAM-FILE
package PACKSPEC

task TASK_SPEC
procedure PROCSPEC

function FCNSPEC
program body PACK BODY

PROCBODY
FCNBODY
TASK.BODY

begin-end BEGIN
exception EXCEPTIONDCL

EXCEPTIONHNDLR

select SELECT

5. Structure of Variable: record RECORD
Block

6. Variable: variable VARIABLE

Terminal constant CONSTANT
7. File: i/o file 10_FILE

Terminal i/o device IODEVICE

task entry TASKENTRY

8. Comment:
ordinary ORDCOMMENT

preprocess PREP-COMMENT

compiler COMP-COMMENT
debugging DEBUG-COMMENT

These types of statements are further described below.

Prepared Under Contracd No. N60921-90-C-0298 16

Usd by PrmisioG d C mpuff Cmmmd Od C"M l Cmpaiy; April 23.1992

Ekmwnary Stalemet Language / Memo 2

4.1 PROGRAM TYPE

Task type is stored in the ESL program tree as follows:

stot type - TASK T!3T
ZO -> type nm;

There are three generic statement types for package: PACKGEN, for procedure:
PROCGEN and for function: FCNGEN. They have the following points.

stmt_type = PACKGEN, PROC GEN or i=:GEN
exO -> nai
tuson -> first generic formal paramter
youngest sibling of tson -> specification of generic program unit

This is illustrated in the figure below.

PACK-SPEC exO -> name of generic unit
PROC..SPEC
or
FCNSPEC

t-son

foma specification ofparaetergeneric unit

4.2 STRUCTURE TYPE

A record type declaration which has the following format:

stat type - RECORD TYPZ;
exO -> type nae;
ezi -> length
tson -> first entity of the record,,

Prepared Under Contract No. N60921-9--C-0298 17

Und by pcffissiom d Ccmpztmr Canmand and W;AP23o .

Elementary Simemena Langtagn Memo 2

4.3 VARIABLE TYPE

The variable type declaration is stored as:

stmt type =VARIABLU TTPZ;
ezO -> type name;
ezl -> type definition, range, enumeration type values,

initial value, lengthi packing and layout.
ez2 -> dimension ranges, if any;

4.4 PROGRAM UNIT

A program unit declaration is a block statement. It denotes begin-end, a system, a

subsystem, a package, a task, a procedure or a function.

Beginend has the following format:

stat type = BEGIN;
t-son -> first statement in the block;

A system or subsystem head is stored as:

strt type - SYSTDE;
eO -> system or subsystem name;

t-son -> first statement in a system;

A package or a task do not have parameters. Their format is

saturt._type - PACKSPEC or TASK SPEC
ezO -> name, [nam of generic package being instantiated)

Their body block has a similar format

stmt type - PACK BODY or TASKBODY
exO-> name
t-son -> first statement

Note: there is no PACK-BODY of the package instantiate a generic package.

A function may have multiple IN mode parameters and returns a value. A procedure may
have none or multiple IN, OUT and INOUT mode (including no value at all).

A function format is:

stm type - Fc. SPEC;
ezO -> function name, [name of generic function being instantiated];
exl -> formal parameters; (or generic formal parameters

if the function is an instance of a generic function);
ex2 -> type of return value;

Prepared Under Contract No. N60921-90-C-0298 18

Used by p.,-mission of Comptur Command and Compol Company; Apil 23.1992

Elementary Satemeni Languaes Memo I

A function body is stored similarly as:

stat type - 0 BODT;
exO -> function name;
el -> input formal parameters, names and types
ez2 -> type of return value;
t-son -> first statement;

Note: there is no function body if it is an instantiation of a generic function.

A procedure is stored as:

stat type - PROCSPMC;
o0 -> procedure name;

cxl -> formal parameter name, mode, and type or generic formal paramaters
if the function is an instance of a generic function;

The body of a procedure is:

stmt..type - PROC BODY;
ex0-> procedure name;
exl-> formal paramattr name, types, mode and default value;
t-son -> first statement;

Note: there is no procedure body if it is an instance of a generic procedure.

The storage of a parameter in a function or a procedure declaration is further explained
below.

Each formal parameter may have a name, a mode, a data type, and a default value. These
associated attributes are stored in expression data structure expnodes as follows:

exl-> expnode exptype:FORMALPARA-
nbrother. points to next parameter,
no_of_desc: 3;
point(1): points to a NAME expnode which contains the parameter mode;

That is, one of "IN", "OUT", or "INOUT";
point(2): points to a NAME expnode, which contains the

data type;
point(3): points to an expression expnode, which is the default value

of the parameter,
no_of_char: length of the parameter name;
str_value: parameter name;

The formats for EXCEPTION and SELECT are

stat type - ZXCEPTIOK
example: ZXCZPTXON;
(descendants are the WHEN <conditions>)

stt_ttype - SELEC
example: SELECT

Prepared Under Contract No. N,0921-90-C-0298 19

Used by pInnmiion d Compr Canmand MW Cool Company; Apil 23.1992

Elementary Statement Lan&aNgF s Memo 3

This is illustrated below:

eq

Program
xO

Declaration ,

Statement
e FORMAL

eill-FOtReALlength

LEXP.

point(l) point2) poinK3)

NAMEEXP APPROP P PRPE

4.S STRUCTURE DECLARATION

A record declaration is of a single or an array of records. Tis declaration is stored in the

program tree as:

stnt .type - PY-CORD;

egO -r ecord name;
exz - type, length;

ez2 -> dimension ranges;

(if ex2nnull, it represents a single record);

t son -> first field of the record;

The fields are stored as descendents of the record.

Prepared Under Contract No. N60921-90-C-0298 20

Usd by ptrmission o(Compmr Command and Canbvl Company; April 23, 1992

Elmentary Statement Langga Memo 2

4.6 VARIABLE

There are two declarations in this category: variable and constant declarations. They are
stored in the program tree as follows.

variable:

strnt_type - VARIABLE;
exO -> variable name;
eml-> type, range, initial value, packing, length;
ez2 -> dimension ranges;

(if ez2=null, it represents a single variable);

constant:

strmt type - CONSTANT;
exO -> constant name;Ixl-> type, value, packing, length;
ex2 -> dimension ranges;

(if ex2-null, it represents a single constant);

4.7 FILE

A file declaration of a frde is stored as:

stm t_type - ZOF!LZ, 10 DVCE;
ezO -> file name;
exl -> list of parameters;
*x2 -> <file type>

<file type> could be 'sequential', 'post',
'mail', 'isam', 'cel', 'screen', 'direct' or others used in the

source language or operating system.

A task entry is declared as:

stmt type - TASK ITRY
exO -> name
exl -> list of parameters, modes and types.

4.8 COMMENT DECLARATION

A comment may originate in a user comment, a keyword or comment in the source language
program. Additionally, a source language keyword may be stored as a comment expression. It
may affect the translation of a program from ESL to Ada.

There are four kinds of comments: ordinary user comment and source language
preprocessor command, compiler command, or debugging command:

Their format is

stmttype - ORDCOoHZNT, PREP COMO= CONP CWOIEH,
or D3ZUG COOM

exO -> comment

Prepared Under Contret No. N60921-90-C-0298 21

Und by pLmission dConupr Command a&d Ccnml Canpany; Appg 23.1992

E1mentary Statement LAnguag Men@ 2

5. EXPRESSION NODES

5.1 TYPES OF EXPRESSION NODES

The table below describes the type of expnodes.

Logical Expressions

Code Expr Name Operation Operator Example

1 OREXPR inclusive disjunction OR a OR b

2 XOREXPR exclusive disjunction XOR a XOR b

3 ANDEXPR conjunction AND a AND b

4 NOTEXPR logical negation NOT NOT a

Relational Expressions

Code Expr Name Operation Operator Example

11 GT_EXPR greater than > a > b

12 GEEXPR greater than or equal to >= a >= b

13 EQEXPR equal to a= b

14 NEEXPR not equal to a b

15 LTEXPR less than a <b

16 LEEXPR less than or equal to <a <= b

Arithmr..ic Expressions

Code Expr Name Operation Operator Example

21 PLUS.EXPR addition + a + b
identity + +3, +a

22 MINUSEXPR subtraction - a - b
negation - -22.5, - a

23 TIMES.EXPR multiplication a *b

24 DIVEXPR division / a / b

25 EXPNTEXPR exponentiation a **

26 MODEXPR modulus MOD a MOD b

27 REMEXPR remainder REM a REMb

28 ABSEXPR absolute value IABS ABS a

Prepared Under Contraet No. N60921-90-C-0298 22

Usd by pcri ssion of Comuwr Cmmamd d Como Company; Aprd 23.1992

Skmentar Semseut Languaa Mea 2

String Concatenation

Code Expr Name Operation Operator Example
31 CONCATEXPR concatenation & a & b

Miscellaneous

Code Expr Name Operation Operator Example

41 PARENEXPR parentheses () (a+b)

42 SUBSCREXPR subscripts () a (i, j, k)

43 FUNCTION_EXPR function () f (a,b)

44 QUALIF_EXPR qualification .filel.ield1

45 ATTREXPR attribute meinteger'image

46 DOTS_EXPR range I .. 10, a.. b

47 COMMAEXPR delimiter, separation f (a, b, c), a(i, j, k)

48 FORMALPARA formal parameter clause pl: in, integer

49 USAGEEXPR defines attributes @e: red, blue

Terminal Nodes

Code Expr Name Operation Example

61 STRINGCONST charcter string "'abcdefg"

62 NUMBERCONST numeric constant 3.14

63 NAME name abc, ml

5.2 FIELDS IN EACH EXPRESSION NODE

Of the 7 fields in the expression node structure, 'nb' and 'nbrother' are not used for the

purpose of storing expressions per se. They are used to indicate the existence of other related

expressions. Normally, if an expression has an 'nbrother', the 'nb' field of the root node of the
expression is set to 1, and the 'nbrother' field points to its 'nbrother' expression. Otherwise they
are 0 and NULL respectively. Therefore, in the following description, 'nb' and 'nbrother' are not
mentioned.

Prepared Under Centrct No. N60921-90-C-0298 23

Used by pL -mission o(Compt r Commad ad Contol Company; Ai 23.1992

Ekenary Statement Languages Mew. 2

Logical Expreulons

1OR3EXPR (inclusive disjunction): <Cexpri> OR <expr2>

exp_ type - 1 (OR,_EXPR)
no -of-desc - 2
point(l) - <expri> subtxee
point(2) - <expr2> 3ubtree
point (3) - null
no-of-char -0

str-value - empty string

2. XOREXPR (exclusive disjunction): <expri> XOR <expr2>

exp type - 2 (XOREXPR)

no of deac - 2
point-l) - <expri> aubtreeI point (2) - <expr2> subtree
Point(3) - null
no of char - 0

str_value -empty string

3. _N-E (conjunction): <expri> ANID -Cexpr2>

no of deac - 2
point(1) - <expri> 3ubtreeI point(2) - <expr2> 3ubtree
point(3) - null
no-of-char - 0

str-value - empty string

4. NOTEXPR (logical negation) : NOT <expr>

exp type - 4 (NOTEXPR)

point (1) - <expr> subtree
Point(2) - null

point(3) - null
no-of-char - 0
str-value - empty string

Relational Expressions

I. GT-EXPR (greater than) : <exprl> > <expr2>

exp type - 11 (GT-EXPR)
no of deac 2
polnt(l) - <exprl> subtree
point (2) - <expr2> subtree

point(3) - null
no-of-char -0

str-value empty string

Prepared Under Contrva No. N60921-90-C-0298 24

Used by p, mnission of Conpiner Command and Control Comnpany; April 23.199

leme.ntay Satemenf Languages memo I

2. GE-EXPR (greater than or equal to): <expri> >- <expr2>

exp-type - 12 (GEEXPR)
no ofdesc - 2
point(1) - <exprl> subtree
point(2) - <expr2> subtree
point(3) - null
no-of-char - 0
3tryvalue -- empty string

3. EQ_EXPR (equal to) : <expri> -<expr2>

exp_ type - 13 (EQEXPR)
no-of -desc - 2

point(l) - <expri> subtree
point(2) - <expr2> subtree
point(3) - null
no-of-char - 0

stryvalue - empty string

4. NEEXPR (not equal to) : <expri> I-<expr2>

exp_ type - 14 (NEEXPR)
no-of -deac - 2
point(l) - <expri> subtree

point(2) - <expr2> subtree
point(3) - null
no-of-char - 0
sttrvalue -empty string

5. LTEXPR (less than): <expri> < <expr2>

exp type - 15 (LT_EXPR)
no of deac - 2
point(1) - <expri> subtree
point(2) - <expr2> 3ubtree

point(3) - null
no-of-char - 0
str-value -empty string

6. LEEXPR (less than or equal to): <exprl> <- <expr2>

exp type - 16 (LEEXPR)
no of deac - 2

_____ w<xpl>sbte

point(l) - <expri> gubtree

point(3) - null
no-of-char - 0

str-value - empty string

Prepared Under Con frad No. N60921-90-C-0298 25

Used by pcrmission of Computer Commnand and Cixal Company; Aptil 23.199M

Eklentary Swenext Lauguagu Memo. 2

Arithmetic Expressions
1. PLUSEXPR (addition* binary operation): <ex3Pri> + <expr2>

exp type - 21 (PLUS EXPR)
no of deac - 2
point (1) - <expri> subtre
point (2) - <expr2> 3ubtre
point (3) - null
no of char - 0j at-;_value - empty string

2. PLUSEXPR (identity, unary operation): + <expr>
exp type - 21 (PLUSEXEPR)
no of deac-I
point(1) - <expr> subtre.
point(2) - null
point(3) - null
no of char - 0
at';_value - empty string

3. MINUSEXPR (subtraction, binary operation): <expri> -<expr2>

exp__type - 22 (MINUS EXPR)Ino of desc - 2
point(1) - <exprl> subtreepoint(2) - <expr2> subtree

point(3) - null

St:_value -empty string

4. MINUSEXPR (negation, unary operation): <expr>

exptype -22 (MINUS EXIPR)
no of deac - 1
point(l) -<expr> subtree
point(2) -null

point(3)- null
str _value -empty string

5. TINESEXPR (multiplication): <eicprl> Ar <expr2>
exp-type - 23 (TIMESEXPR)
no of deac 2
po n(1) - <expri> subtree
point(2) - <expr2> subtree
point(3) - null

v noof-char -0

aTvalue - empty string

Prepared Under Contract No. N6092I-90..C40298 26

Used by PL mi*ssion d Compiser Command avid CmAir Comipany; Apig 23.1992

IElementary Statement Languages Memo 2

I 6. DIVEXPR (division) : <expri> / <expr2>

exp type - 24 (DIVEXPR)I no of dese - 2
point(l) - <expri> subtree
point(2) -<expr2> subtree
point(3) - null

no-of-char - 0
str -value - empty string

I7. EXPNT-EXPR (exponentiation) : <expri> **<expr2>

exp type - 25 (EXPNTEXPR)
no of desc -2I point(l) - <expri> subtree
point(2) - <expr2> subtree
point(3) - null
no-of-char -0

MOD -lu empty string

8. _O-EP (modulus): <expri> MOD <expr2>

_x-yp 26 (MODEXPR)
no of desc - 2

point(l) - <exprl> subtree

point(2) - <expr2> subtree
point(3) - null
no-of-char - 0I atr-value - empty string

9. REMEXPR (remainder) : <expri> REM <expr2>

exp .type - 27 (REMEXPR)
no of desc - 2

point(l) - <exprl> subtree
9point(2) = <expr2> ute

point (3) -null
no of char - 0I str-value - empty string

10. ABSEXPR (absolute value) : ABS <expr>

exp_ type - 26 (ABSEXPR)I no-of-desc - 1
point(l) - <expr> subtree
point(2) - null

point(3) - null
no-of-char - 0
str-value - empty string

Prepared Under Contrac No. N60921-90-C-0298 27

Lied by p--Yission d Cunipztr Cormmn and Cosui Canpuiy; AprIl 23.19IM

Elemenivy~Stwaent Lenguogn Memo 2

String Concatenation
1CONCATExpR (concatenation): <expri> I<expr2>

exp_ type - 31 (CONCATEXPR)
no of desc - 2
point(1) = <expri> subtree
point (2) - <expr2> subtree
point (3) - null
no-of-char - 0-
str value - empty string

Miscellaneous Expressions

1PAREN EXPR (parentheses): (<expr>)

exp type - 41 (PAREREXPR)
no of desc - 1
poi-nt(1) - <expr> subtree
point (2) - null
point(3) - null
no-of-char - 0
str value - empty string

2. SUBSCREXPR (subscripted variables): <exprl>(<expr2>)

exp__type - 42 (SUBSCREXPR)
no of desc - 2
point () - <exprl> subtree, the variable
point(2) - <expr2> subtree, the subscripts
point (3) - null
no-of-char - 0
str-value - empty string

3. FUNCTIONEXPR (function calls): <exprl>(<expr2>)

exp_ type - 43 (FUNCTIONEXPR)
no of deac - 2
point (1) - <exprl> subtree, the function name
point(2) - <expr2> subtree, the actual parameters
point (3) - null
no-of-char - 0
str-value - empty string

4. QUALIFEXPR (qualification): <exprl> . <expr2>

exp-type - 44 (QUALIFEXPR)
no of desc - 2
point(1) - <expri> subtree, such as record name
point(2) - <expr2> subtree, such as component in record
point(3) - null
no-of-char - 0
str-value - empty string

5. ATTREXPR (attribute): <expri> I <expr2>

exp- type -45 (ATTEXPR)
no-ofdesc -2

Prepa red Under Contod No. N60921-90-C-0298 2

Used by pa. -mision of Computtf Command and Cuod Company. Arril 23.19IM

Elementary Statement LAwgunq Memo 2

point (1) - <exprl> subtre
point(2) - <expr2> aubtree
point(3) - null
no of char - 0
str value - empty string

6. DOTSEXPR (range): <exprl> .. <expr2>

exp_type - 46 (DOTSEXPR)
noofdesc - 2
point (l) - <exprl> subtree

point (2) - <expr2> subtree

point(3) - null

noofchar - 0
str_value - empty string

7. COMKAEXPR (delimiter, separation): <expri> , <expr2>

exp-type - 47 (COMMAEXPR)
noof desc - 2

point(l) - <expri> subtree, subscript or actual parameter
point(2) - <expr2> subtree, subscripts or actual parameters
point(3) - null
no-of char - 0
strvalue - empty string

8. FORMALPARA (formal parameters): (<exprl>] [<expr2>1 [<expr3>) [<expr4>1

where <expl> - formal parameter name
<exp2> - mode, 'IN', 'OUT', or 'INOUT'
<exp3> - parameter type name
<exp4> - default parameter value, may or may not

be present

exp type - 48 (FORMALPARA)
no of desc - 3 if <exp4> present, 2 if not
point(1) - <expr2> subtree, the mode
point(2) - <expr3> subtree, the type name
point(3) - <expr4> subtree, the default value if present

null if absent
no-ofchar - length of the formal parameter name, <exprl>
strvalue - the formal parameter name

Prepared Under CONeraa No. N60921-90-C-0298 29

Ved by pnmissio. d Compate, Camnd od cd Cc.npa; Api 23.1 2

Elementary Statement Language: PMeme 2

9. USAGE EXPR (expression usage indication$: SC: <expr>
where C ia a single character indicating the usage Of <eXpr>.

exp type - 49 (USAGEEXPR)
no-of-deac - 1
point (1) - <expr> subtres
point(2) - null
point (3) -null
no-of char - length of the character string in Istr value'

str-value 'COMMENT' if C'
wDELTA" if C#1
"ENUMERN if Of

*DIGITO if CF#
"INITIAL" if CF0

*LENGTHO if CdL
OPNEW" ~ if C##

"PACKING" if C0P

ORANGE' if C #

"LAYOUTw if CP0

For each comment a usage expression node (expjype=USAGE..EXPR)
with a string constant node (exp..jype--STRING-.CONST) has its only de-
scendent (point(l)), which contains the comment as its 'str.yalue'.

In general, the usage expression of the comment is 'pbrother' (before) or
9nbrother' (after) of the neighboring expression node which has higher prece-
dence.

Terminal Nodes

10. STRINGCONST (character strings) : vabc xyz"

exp type - 61 (STRINGCONST)

no-of-deac - 0
point (1) - null
point (2) - null
point (3) - null
no-of-char - length of str value, not including quotes,

7 in this example
atr-value - character string Oab xyzO

I.NUMBER CONST (numbers): 3.1416

exp__type - 62 (NUMBERCONST)
no-of-deso - 0
point(l) - null
point (2) - null
point(3) - null
no-of-char - length of str-value, 6 in this example
str-value - character string 03.14160

Prepared Under Contract No. N60921-90-C-0298 3

Vlid by pcrnusswn Of COmPutef Command And C4WWo Company; Ajwii 23.19IM

Elewentry Stumeni Lanta Mee 3

12.mAxE (names): ATRIX 3

exp type - 63 (NAME)
noofdesc - 0

point(l) - null
point (2) - null

point (3) - null
noofchar - length of str value, 8 in this example
strvalue - character string OMATRIX_3"

5.3 TREE CONSTRUCTION EXAMPLES

Example 1

In the following, an expression, a*b+c/d, is used to illustrate how an expression subtree is
constructed. A horizontal rectangle represents a non-terminal node; while a vertical rectangle
represents a terminal node. Each small box in the rectangle represents a field in the structure. A
field from which an arrow comes out means a pointer, otherwise, it is an integer or a character
string with its value indicated. For clarity only the fields involved are indicated.

X 0

a b C d

In the above diagram, x, y, and z represent the expression types as well as the operators.
They have the following value:

x - PLUS ZXPR
y - TINES_3XPR

z - VAR NK

Prepared Under Contract No. N60921-90-C-0298 31

Uned by psrnission d Canpule Command md Camal Conpony; Apil 23, 1992

i kinentary Statemnt Ldnxuga Mee 2

i Example 2

A function call, f(a*b+c/d,x+y), is used to illustrate how such an expression bee is
I constructed.

ifuncti n call

I

I exrsso .- *.b° +' c/d °r I I +~ II

(details of this expression
is the same as that in Example 1)

IX
In the above diagram, M N, L, K and J represent expresson types as follows:

M : FUNCTIONEXPR
N = PROGRAM_NAME
L = COMMAEXPR
J = VARNAME

II

Prepared Under Contract N o. N60921-90-C-0298 32 A 2.1992

IUned by FK. rmission o optfCnw ~dCney r92.I

Elementary Statement Language Mem 2

I Example 3

A qualified name a(k).b(ij+l) can be stored as follows:

qualif"d nan

c I
I U

I I [ZL .

I U

In the above diagram, X< Y< 7, W, V and U represent expression types as follows:

X - QUALIF WXR
Y - SUBSCA WR
Z - VAR NAME
N - COMMA RXPR
V - PLUS_.XPR
U - N zR _CONS

Prepared Under Contract No. N60921-90-C-0298 33

Used by permission d Compumt Command and CQxMl Company; Apn 23.1992

Ekie ntary Statenentn Languages Memo. 2

Example 4

VARIABLETYPE lalphafirst-type) IS (CHARACTER) of ((0. .15));

exo - exp _type -NAME
nb-0
nbrother-null
no of desc-0

point (1)-null
no of char-16
atr Value@
walphafirst-typeff

exp_t ype-NAME
nb-0
nbrother-null
no of-desC-0
point (1)-null
no-of-char-9
str value-

"CHARACTER"

ex2-'O exp_typeDOTSEXPR
nb-0
nbrother-nul 1
no of desc-2

point (l)p o i n t
M -

2) -
point (3) -null
no-of-char-O
str value-empty

exp type-NUMBERCONS? exp type-NUMBERCONS?
nb-0 nb-0
nbrother-null nbrother-null
no of desc-0 no of desc-O

point (1-null poin;t (1)-null
no-of-char-i no-of-char-2
str-value-0O 3tr-value-"15m

Prepared Under Contract No. N60921-R0-C-0298 3

Used by pL mrission d Comnpute Command and Couiol Company; April 23.19IM

El.rentary Suaeeuwni Languages Meno.2

Example S

RECORD-TYPE talpha-tyPe) IS RECORD 1 OL: 160):

eX0____wexp_ typeNAME
nb-0
nbrother-null
no of desc-0
point (i) -null

no-of-charl10
atr va lue-

-alpha-type'

exp type-USAGE-EXPR
nb-0
nbrother-null

no of desc-1
point(l)-
point (2) -null
point (2) -null1

no of char-6

str-value-"LF.NGTH

exp_ type-NUMBER_CONST
nb-O

nbrothe-null
no of deac-0
point (i) -null
no-of-char-3

str-value-N160'

Example 6
VARIABLE (thir~d) : (INTEGER) (6R:O..2553 16p:0*wORDI (QY:0. .7)1:

Prepazred Under Centmet No. N60921-90-C-0298

Used by pcnnissuc of Canptef Command and Cowd Company; April 23.1992

Elementary Statement Languages M 3

-0 exptypeNA4E
nb-0
nbrother-null
no-of-desc-0
point (1)-null
no-of-char-S
str valuea'"thirdw

a1- exp._type-NAME ezp type= eip-typew exp_typeft

nb-i USAGE-EXPR USAGE EXPI USAGE EXPR
nbrother- 8-nb-i nb-i nb-0
no-of-desc-O nbrother-e- P nbrother- 9 -e nbrother-nuil

no-of-desc- no of desc-1 no-o fdesc-i
point (i) -null point (1) =point(i)- point(l)-
no of char-7 point(2)-nu 1 point(2)-n 1 point(2)-nu 1
str-value- point(3)-nul point(3)-nu 1 point(3)-nu 1
"INTEGERO no of-char-S no-of-char- no of char-

str-value- str-value- at r va lue-
__________ AGE. &PACKI G, t LAYOUT"

exp_ type- exp type- exp_ type-
DOTSEXPR TINESEXPR DOTS EXPR

nb-0 nb-0 nb-0
nbrother-null nbrother-null nbrother-null
no of desc-2 no-of-desc-2 no of desc-2
point (l) point(l)- point(i)-

pon()point(2)- point(2)-
poit 3):n 1point(3)-n 11 point(3)-nu 1
noofchr-no of cha 0 noof Lch ar-

str-vlue-str-alu tr-valuew

exp.t ype- e1_Ye -AptYpe str value-
NUMBER_-CONST NUMBER CONST o"NUMBERCOIST NUMBER-CONST
nb-0m0 nb-0 n-
nbrother-nuil nbrother-nul nbrother-null nbrother-null
no of desc-O no of -desc-0 no of deac-0 no of desc-0
point (1) -null point (L) -nu point (L) -null1 point (1)-null
no-of-char-i no-of char- no-of-char-i no of char-i
str -value- _t-ale atr-value- str value-

NUMBERCONST NAME
nb-O nb-O
nbrother-null nbrother-null
no-of-desc-O no-of-desc-0
point (i)-null point(i)-null
no of char-i no of char-4
str value- atr_value-

WOO "WORDO

Prepared Under Centract No. N6fJ92I-90-C-J29U 3

Used by pcimisske st Campnt Canmand OW Cwd Caimpmir. Apil 23. J192

Ekmetsq udewnt ~firsesMemo. 2

Example 7

VARIABLE (tran) (alpha..type) IQR:O. .4);

ex exp type-
*x3 exp type-

pont(1-null

no of...cha r-4
pit2

3tr vlue-
ont3-nl

notfrca'nlO
ha-

str valuein

exp- expYyp
exptyp-

NA14E
OTS -EXRCOS

nb-O
nb-O

nbrrthher-null
nbrother-nfull

no of desc-O no of decO2

point~i)-null
point()nul

nolof chari no -of -char-i

strvaueO trvalue-e

D7

PreparedMBR-ON Undr enre N. 6021ONC-JP

Uibr emsu nb ciCnaefCuadan ouI -ey pi 3 W

Elementary Statement Langmgn
Memo 2

Example 8

The comma operator "," is used for delimiting the lists of subscripts such as those in A(ij) or

actual parameters in functions such as ADD(ab,c). The are stored as follows

SUBSCR YMVD

point (1) point (2)

NAE71 7 -

NAft COMMA EXPR

point (g) \ point (2)

NAME NAME

II

FUNCTION_EXPRI

point (1) point (2)

[\1
"ADD99COMMA-EXPRI

point (I) point (2)

I

NAMECOMEP

poit (1)pon(2

NAME NAME1

Prepared Under Contraci No. N60921-90-C-0298
38

Used by pt -missin d Compfur Cmmand d CW. CMP MY; Apr 231992

Elementary Statement Language Memo 2

Appendix: ESL Statement Code

A.I. Declaration Statemeno

STATEMENT STATEMENT STATEMENT
TYPE SUBTYPE TYPE NAME CODE

1. Program Type Block task TASKTYPE 1

generic GENERIC 2

2. Structure Type Block record type RECORDTYPE 11

3. Variable Type Terminal variable type VARIABLETYPE 21

4. Program Unit Block system SYSTEM 31
program file PROGRAM_FILE 32

package PACKSPEC 33

task TASKSPEC 34
procedure PROCSPEC 35

function FCNSPEC 36

program body PACKBODY 37
TASKBODY 38
PROCBODY 39
FCNBODY 40

begin-end BEGIN 41
exception EXCEPTIONDCL 42

EXCEPTIONHNDLR 43

select SELECT 44
5. Structure Block record RECORD 51

6. Variable Terminal variable VARIABLE 61
constant CONSTANT 62

7. File Terminal i/o file 10_FILE 71

i/o device 10-DEVICE 72
task entry TASK._ENTRY 73

8. Comment Terminal ordinary ORCOMMENT 81
preprocess PREPCOMMENT 82

compiler COMPCOMMENT 83
debugging DEBUGCOMMENT 84

Prepared Vnder Contract No. N60921-90--C-0298 39

U td by pcrr nsion d Corputer Cnm d d Cw l Conpary; Apid 23,1992

EkmenfoWy Statement Languages Atein. 2

A.2. Executable Statements

STATEMENT TYPE STATEMENT SUBTYPE STMT TYPE NAME

1. Condition if-then--else IF...STAT 101

Block case CASE_.STAT 102

when WHENSTAT 103

2. Loop while WHL]LE-STAT III

Block until UNTILSTAT 112

for FORSTAT 113

3. Assignment assignment ASSIGNSTAT 121
Terminal

4. Procedure Call call CALLSTAT 131

Terminal raise exception RAISESTAT 132

5. Message send/receive message MSG-CALL 141
Terminal accept message MSG_ACCEPT 142

6. Input/Output read READ-STAT 151

Terminal write WRITE..STAT 152

7. 1/O Auxiliary open OPEN_FILE 161

Terminal close CLOSEFILE 162

position POSITIONFILE 163

8. Context with WITH_STAT 171

Terminal use USESTAT 172

prograni..separate PACKSEP 173
TASKSEP 174
PROCSEP 175
FCILSEP 176

___________ separate SEPARATESTAT 177

9. Control Transfer return RETURN...STAT 181ITerminal 0-te0 GO TO 182
exit* EXIT 183
null* NULL 184

Extension eliminated in later translation.

Prepared Under Contract No. N60921-90-C--0298 4

Used by permission of Ccmpiar Cmmand and Caiua Caimpany; April23. IM

